识别相关疾病网络的计算技术

K. McGarry, Ukeme Daniel
{"title":"识别相关疾病网络的计算技术","authors":"K. McGarry, Ukeme Daniel","doi":"10.1109/UKCI.2014.6930179","DOIUrl":null,"url":null,"abstract":"Recently there has been a lot of interest in using computational techniques to build networks of protein-to-protein interactions, interacting gene networks and metabolic reactions. Many interesting and novel discoveries have been made using graph based structures using links and nodes to represent the relationships between proteins and genes. Analysis of graph networks has revealed that genes and proteins cooperate in modules performing specific functions and that there is crosstalk or overlap between modules. In this paper we take these ideas further and build upon current knowledge to build up a network of human related diseases based on graph theory and the concept of overlap or shared function. We explore the hypothesis that many human diseases are linked by common genetic modules, therefore a defect in one of any of the cooperating genes in a module may lead to a specific disease or related symptom. We build our networks using data and information extracted from several online databases along with supporting knowledge in the form of biological ontologies.","PeriodicalId":315044,"journal":{"name":"2014 14th UK Workshop on Computational Intelligence (UKCI)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Computational techniques for identifying networks of interrelated diseases\",\"authors\":\"K. McGarry, Ukeme Daniel\",\"doi\":\"10.1109/UKCI.2014.6930179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently there has been a lot of interest in using computational techniques to build networks of protein-to-protein interactions, interacting gene networks and metabolic reactions. Many interesting and novel discoveries have been made using graph based structures using links and nodes to represent the relationships between proteins and genes. Analysis of graph networks has revealed that genes and proteins cooperate in modules performing specific functions and that there is crosstalk or overlap between modules. In this paper we take these ideas further and build upon current knowledge to build up a network of human related diseases based on graph theory and the concept of overlap or shared function. We explore the hypothesis that many human diseases are linked by common genetic modules, therefore a defect in one of any of the cooperating genes in a module may lead to a specific disease or related symptom. We build our networks using data and information extracted from several online databases along with supporting knowledge in the form of biological ontologies.\",\"PeriodicalId\":315044,\"journal\":{\"name\":\"2014 14th UK Workshop on Computational Intelligence (UKCI)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 14th UK Workshop on Computational Intelligence (UKCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UKCI.2014.6930179\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 14th UK Workshop on Computational Intelligence (UKCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UKCI.2014.6930179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

最近,人们对使用计算技术来构建蛋白质与蛋白质相互作用、相互作用基因网络和代谢反应的网络很感兴趣。利用基于图的结构,利用链接和节点来表示蛋白质和基因之间的关系,已经取得了许多有趣和新颖的发现。图网络分析揭示了基因和蛋白质在执行特定功能的模块中合作,并且模块之间存在串扰或重叠。在本文中,我们将这些想法进一步发展,并在现有知识的基础上,基于图论和重叠或共享函数的概念建立了一个人类相关疾病的网络。我们探索了这样一个假设,即许多人类疾病是由共同的遗传模块联系在一起的,因此一个模块中任何一个合作基因的缺陷都可能导致特定的疾病或相关症状。我们使用从几个在线数据库中提取的数据和信息以及生物本体形式的支持知识来构建我们的网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computational techniques for identifying networks of interrelated diseases
Recently there has been a lot of interest in using computational techniques to build networks of protein-to-protein interactions, interacting gene networks and metabolic reactions. Many interesting and novel discoveries have been made using graph based structures using links and nodes to represent the relationships between proteins and genes. Analysis of graph networks has revealed that genes and proteins cooperate in modules performing specific functions and that there is crosstalk or overlap between modules. In this paper we take these ideas further and build upon current knowledge to build up a network of human related diseases based on graph theory and the concept of overlap or shared function. We explore the hypothesis that many human diseases are linked by common genetic modules, therefore a defect in one of any of the cooperating genes in a module may lead to a specific disease or related symptom. We build our networks using data and information extracted from several online databases along with supporting knowledge in the form of biological ontologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信