均匀/非均匀水分分布对土壤干湿过程中探地雷达波速的影响

J. Sham, W. Lai, C. Leung
{"title":"均匀/非均匀水分分布对土壤干湿过程中探地雷达波速的影响","authors":"J. Sham, W. Lai, C. Leung","doi":"10.1109/ICGPR.2016.7572693","DOIUrl":null,"url":null,"abstract":"This paper studies the effects of relatively homogeneous (RHWD) and relatively inhomogeneous water distributions (RIWD) in soil compared by varying the water content through a wetting and drying cycle in a tank (1.85m long × 1.55m wide × 1m deep) filled with 750mm thick plant soil. During the cycle, a 900MHz antenna was regularly used to capture GPR radargrams on a buried steel pipe. Hyperbolic reflections of a buried pipe at a fixed position were extracted to measure wave velocities/dielectric constants at different RHWD and RIWD in the wetting and drying cycle. A vertical coaxial-based water content sensor was also installed in a vertical standpipe in the middle of the tank to obtain the vertical water content profile, synchronized with and correlated to the GPR wave velocity/dielectric constant of the soil. The result of cross plotting between the dielectric constant and soil water content shows that the volumetric fraction of water in a porous medium is the sole important factor affecting dielectric properties of soil.","PeriodicalId":187048,"journal":{"name":"2016 16th International Conference on Ground Penetrating Radar (GPR)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Effects of homogeneous/heterogeneous water distribution on GPR wave velocity in a soil's wetting and drying process\",\"authors\":\"J. Sham, W. Lai, C. Leung\",\"doi\":\"10.1109/ICGPR.2016.7572693\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies the effects of relatively homogeneous (RHWD) and relatively inhomogeneous water distributions (RIWD) in soil compared by varying the water content through a wetting and drying cycle in a tank (1.85m long × 1.55m wide × 1m deep) filled with 750mm thick plant soil. During the cycle, a 900MHz antenna was regularly used to capture GPR radargrams on a buried steel pipe. Hyperbolic reflections of a buried pipe at a fixed position were extracted to measure wave velocities/dielectric constants at different RHWD and RIWD in the wetting and drying cycle. A vertical coaxial-based water content sensor was also installed in a vertical standpipe in the middle of the tank to obtain the vertical water content profile, synchronized with and correlated to the GPR wave velocity/dielectric constant of the soil. The result of cross plotting between the dielectric constant and soil water content shows that the volumetric fraction of water in a porous medium is the sole important factor affecting dielectric properties of soil.\",\"PeriodicalId\":187048,\"journal\":{\"name\":\"2016 16th International Conference on Ground Penetrating Radar (GPR)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 16th International Conference on Ground Penetrating Radar (GPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICGPR.2016.7572693\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 16th International Conference on Ground Penetrating Radar (GPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICGPR.2016.7572693","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文在填充750mm厚植物土的槽(长1.85m ×宽1.55m ×深1m)中,通过不同的干湿循环,比较了土壤相对均匀(RHWD)和相对不均匀水分分布(RIWD)对土壤的影响。在这个周期中,一个900MHz的天线经常被用来捕捉埋地钢管上的探地雷达雷达图。提取固定位置埋管的双曲反射,测量干湿循环中不同RHWD和RIWD下的波速/介电常数。在水槽中央的垂直立管中安装垂直同轴式含水量传感器,获取垂直含水量剖面,与土壤的探地雷达波速/介电常数同步并相关。介质介电常数与土壤含水量的交叉图结果表明,孔隙介质中水的体积分数是影响土壤介电特性的唯一重要因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effects of homogeneous/heterogeneous water distribution on GPR wave velocity in a soil's wetting and drying process
This paper studies the effects of relatively homogeneous (RHWD) and relatively inhomogeneous water distributions (RIWD) in soil compared by varying the water content through a wetting and drying cycle in a tank (1.85m long × 1.55m wide × 1m deep) filled with 750mm thick plant soil. During the cycle, a 900MHz antenna was regularly used to capture GPR radargrams on a buried steel pipe. Hyperbolic reflections of a buried pipe at a fixed position were extracted to measure wave velocities/dielectric constants at different RHWD and RIWD in the wetting and drying cycle. A vertical coaxial-based water content sensor was also installed in a vertical standpipe in the middle of the tank to obtain the vertical water content profile, synchronized with and correlated to the GPR wave velocity/dielectric constant of the soil. The result of cross plotting between the dielectric constant and soil water content shows that the volumetric fraction of water in a porous medium is the sole important factor affecting dielectric properties of soil.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信