{"title":"使用视觉皮层弹性网分层MAX模型处理闭塞","authors":"Ali Alameer, P. Degenaar, K. Nazarpour","doi":"10.1109/INISTA.2017.8001150","DOIUrl":null,"url":null,"abstract":"Humans can recognise objects under partial occlusion. Machine-based approaches cannot reliably recognise objects and scenes in the presence of occlusion. This paper investigates the use of the elastic net hierarchical MAX (En-HMAX) model to handle occlusions. Our experiments show that the En-HMAX model achieves an accuracy of ∼70%, when ∼50% artificial occlusions are applied to the centre of the visual object-field. Furthermore, when the same percentage of occlusion is applied to the peripheral, the model reports higher accuracies. A similar degree of robustness has been observed when recognising scenes. The results suggest that cortex-like models, such as the En-HMAX are reliable for solving the occlusion challenge.","PeriodicalId":314687,"journal":{"name":"2017 IEEE International Conference on INnovations in Intelligent SysTems and Applications (INISTA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Processing occlusions using elastic-net hierarchical MAX model of the visual cortex\",\"authors\":\"Ali Alameer, P. Degenaar, K. Nazarpour\",\"doi\":\"10.1109/INISTA.2017.8001150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Humans can recognise objects under partial occlusion. Machine-based approaches cannot reliably recognise objects and scenes in the presence of occlusion. This paper investigates the use of the elastic net hierarchical MAX (En-HMAX) model to handle occlusions. Our experiments show that the En-HMAX model achieves an accuracy of ∼70%, when ∼50% artificial occlusions are applied to the centre of the visual object-field. Furthermore, when the same percentage of occlusion is applied to the peripheral, the model reports higher accuracies. A similar degree of robustness has been observed when recognising scenes. The results suggest that cortex-like models, such as the En-HMAX are reliable for solving the occlusion challenge.\",\"PeriodicalId\":314687,\"journal\":{\"name\":\"2017 IEEE International Conference on INnovations in Intelligent SysTems and Applications (INISTA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on INnovations in Intelligent SysTems and Applications (INISTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INISTA.2017.8001150\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on INnovations in Intelligent SysTems and Applications (INISTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INISTA.2017.8001150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Processing occlusions using elastic-net hierarchical MAX model of the visual cortex
Humans can recognise objects under partial occlusion. Machine-based approaches cannot reliably recognise objects and scenes in the presence of occlusion. This paper investigates the use of the elastic net hierarchical MAX (En-HMAX) model to handle occlusions. Our experiments show that the En-HMAX model achieves an accuracy of ∼70%, when ∼50% artificial occlusions are applied to the centre of the visual object-field. Furthermore, when the same percentage of occlusion is applied to the peripheral, the model reports higher accuracies. A similar degree of robustness has been observed when recognising scenes. The results suggest that cortex-like models, such as the En-HMAX are reliable for solving the occlusion challenge.