上同调

Colloqu Ium, Mathemat Icum
{"title":"上同调","authors":"Colloqu Ium, Mathemat Icum","doi":"10.1142/9789811214820_0007","DOIUrl":null,"url":null,"abstract":". Hom-dendriform algebras are twisted analogs of dendriform algebras and are splittings of hom-associative algebras. In this paper, we define a cohomology and deformations for hom-dendriform algebras. We relate this cohomology to the Hochschild-type cohomology of hom-associative algebras. We also describe similar results for the twisted analog of dendriform coalgebras.","PeriodicalId":141790,"journal":{"name":"Lectures on the Geometry of Manifolds","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Cohomology\",\"authors\":\"Colloqu Ium, Mathemat Icum\",\"doi\":\"10.1142/9789811214820_0007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". Hom-dendriform algebras are twisted analogs of dendriform algebras and are splittings of hom-associative algebras. In this paper, we define a cohomology and deformations for hom-dendriform algebras. We relate this cohomology to the Hochschild-type cohomology of hom-associative algebras. We also describe similar results for the twisted analog of dendriform coalgebras.\",\"PeriodicalId\":141790,\"journal\":{\"name\":\"Lectures on the Geometry of Manifolds\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lectures on the Geometry of Manifolds\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/9789811214820_0007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lectures on the Geometry of Manifolds","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9789811214820_0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

. 共轭树形代数是树形代数的扭曲类似物,是共轭结合代数的分裂。在本文中,我们定义了人树形代数的上同调和变形。我们把这个上同调与同结合代数的hochschild型上同调联系起来。我们还描述了树状余代数的扭曲模拟的类似结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cohomology
. Hom-dendriform algebras are twisted analogs of dendriform algebras and are splittings of hom-associative algebras. In this paper, we define a cohomology and deformations for hom-dendriform algebras. We relate this cohomology to the Hochschild-type cohomology of hom-associative algebras. We also describe similar results for the twisted analog of dendriform coalgebras.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信