{"title":"上同调","authors":"Colloqu Ium, Mathemat Icum","doi":"10.1142/9789811214820_0007","DOIUrl":null,"url":null,"abstract":". Hom-dendriform algebras are twisted analogs of dendriform algebras and are splittings of hom-associative algebras. In this paper, we define a cohomology and deformations for hom-dendriform algebras. We relate this cohomology to the Hochschild-type cohomology of hom-associative algebras. We also describe similar results for the twisted analog of dendriform coalgebras.","PeriodicalId":141790,"journal":{"name":"Lectures on the Geometry of Manifolds","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Cohomology\",\"authors\":\"Colloqu Ium, Mathemat Icum\",\"doi\":\"10.1142/9789811214820_0007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". Hom-dendriform algebras are twisted analogs of dendriform algebras and are splittings of hom-associative algebras. In this paper, we define a cohomology and deformations for hom-dendriform algebras. We relate this cohomology to the Hochschild-type cohomology of hom-associative algebras. We also describe similar results for the twisted analog of dendriform coalgebras.\",\"PeriodicalId\":141790,\"journal\":{\"name\":\"Lectures on the Geometry of Manifolds\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lectures on the Geometry of Manifolds\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/9789811214820_0007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lectures on the Geometry of Manifolds","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9789811214820_0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
. Hom-dendriform algebras are twisted analogs of dendriform algebras and are splittings of hom-associative algebras. In this paper, we define a cohomology and deformations for hom-dendriform algebras. We relate this cohomology to the Hochschild-type cohomology of hom-associative algebras. We also describe similar results for the twisted analog of dendriform coalgebras.