引导视觉分析的投机执行

F. Sperrle, J. Bernard, M. Sedlmair, D. Keim, Mennatallah El-Assady
{"title":"引导视觉分析的投机执行","authors":"F. Sperrle, J. Bernard, M. Sedlmair, D. Keim, Mennatallah El-Assady","doi":"10.1109/MLUI52768.2018.10075559","DOIUrl":null,"url":null,"abstract":"We propose the concept of Speculative Execution for Visual Analytics and discuss its effectiveness for model exploration and optimization. Speculative Execution enables the automatic generation of alternative, competing model configurations that do not alter the current model state unless explicitly confirmed by the user. These alternatives are computed based on either user interactions or model quality measures and can be explored using delta-visualizations. By automatically proposing modeling alternatives, systems employing Speculative Execution can shorten the gap between users and models, reduce the confirmation bias and speed up optimization processes. In this paper, we have assembled five application scenarios showcasing the potential of Speculative Execution, as well as a potential for further research.","PeriodicalId":421877,"journal":{"name":"2018 IEEE Workshop on Machine Learning from User Interaction for Visualization and Analytics (MLUI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Speculative Execution for Guided Visual Analytics\",\"authors\":\"F. Sperrle, J. Bernard, M. Sedlmair, D. Keim, Mennatallah El-Assady\",\"doi\":\"10.1109/MLUI52768.2018.10075559\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose the concept of Speculative Execution for Visual Analytics and discuss its effectiveness for model exploration and optimization. Speculative Execution enables the automatic generation of alternative, competing model configurations that do not alter the current model state unless explicitly confirmed by the user. These alternatives are computed based on either user interactions or model quality measures and can be explored using delta-visualizations. By automatically proposing modeling alternatives, systems employing Speculative Execution can shorten the gap between users and models, reduce the confirmation bias and speed up optimization processes. In this paper, we have assembled five application scenarios showcasing the potential of Speculative Execution, as well as a potential for further research.\",\"PeriodicalId\":421877,\"journal\":{\"name\":\"2018 IEEE Workshop on Machine Learning from User Interaction for Visualization and Analytics (MLUI)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Workshop on Machine Learning from User Interaction for Visualization and Analytics (MLUI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MLUI52768.2018.10075559\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Workshop on Machine Learning from User Interaction for Visualization and Analytics (MLUI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLUI52768.2018.10075559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

我们提出了可视化分析的推测执行概念,并讨论了其对模型探索和优化的有效性。投机执行允许自动生成可选的、相互竞争的模型配置,除非用户明确确认,否则这些配置不会改变当前模型状态。这些选择是基于用户交互或模型质量度量来计算的,并且可以使用增量可视化来探索。通过自动提出建模备选方案,采用Speculative Execution的系统可以缩短用户和模型之间的差距,减少确认偏差,加快优化过程。在本文中,我们汇集了五个应用场景,展示了投机执行的潜力,以及进一步研究的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Speculative Execution for Guided Visual Analytics
We propose the concept of Speculative Execution for Visual Analytics and discuss its effectiveness for model exploration and optimization. Speculative Execution enables the automatic generation of alternative, competing model configurations that do not alter the current model state unless explicitly confirmed by the user. These alternatives are computed based on either user interactions or model quality measures and can be explored using delta-visualizations. By automatically proposing modeling alternatives, systems employing Speculative Execution can shorten the gap between users and models, reduce the confirmation bias and speed up optimization processes. In this paper, we have assembled five application scenarios showcasing the potential of Speculative Execution, as well as a potential for further research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信