平流层气溶胶的光学性质和分布

R. S. Harris, S. Mathur, C. R. Philbrick
{"title":"平流层气溶胶的光学性质和分布","authors":"R. S. Harris, S. Mathur, C. R. Philbrick","doi":"10.1109/COMEAS.1995.472375","DOIUrl":null,"url":null,"abstract":"Stratospheric aerosols significantly influence both the Earth's climate and the chemical composition of the stratosphere. Volcanic aerosols injected into the stratosphere, due to large volcanic eruptions, further enhance the effect on the climate and possibly lead to ozone depletion in the middle latitude stratosphere. The authors studies focus primarily on the change in the distribution of stratospheric aerosols before and after volcanic activity. The particle backscatter and other properties of stratospheric aerosols are studied to describe their variations. The Penn State Rayleigh/Raman lidar utilizes a Nd:YAG laser transmitting at both the doubled (532 nm) and tripled (355 nm) frequencies. The detector is equipped with separate channels to measure the low and high altitude signals from both the 532 nm and 355 nm as well as the Raman shifted returns due to N/sub 2/ and H/sub 2/O (660 nm and 607 nm). The LAMP lidar was first deployed on board the RV Polarstem during the LADIMAS campaign and has since been in operation in the United States. Scattering due to stratospheric aerosols from volcanic activity has been studied across different latitudes and over time. The effects due to Mt. Pinatubo (Philippines) and Mt. Hudson (Chile) eruptions have been compared.<<ETX>>","PeriodicalId":274878,"journal":{"name":"Conference Proceedings Second Topical Symposium on Combined Optical-Microwave Earth and Atmosphere Sensing","volume":"191 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optical properties and distribution of stratospheric aerosols\",\"authors\":\"R. S. Harris, S. Mathur, C. R. Philbrick\",\"doi\":\"10.1109/COMEAS.1995.472375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stratospheric aerosols significantly influence both the Earth's climate and the chemical composition of the stratosphere. Volcanic aerosols injected into the stratosphere, due to large volcanic eruptions, further enhance the effect on the climate and possibly lead to ozone depletion in the middle latitude stratosphere. The authors studies focus primarily on the change in the distribution of stratospheric aerosols before and after volcanic activity. The particle backscatter and other properties of stratospheric aerosols are studied to describe their variations. The Penn State Rayleigh/Raman lidar utilizes a Nd:YAG laser transmitting at both the doubled (532 nm) and tripled (355 nm) frequencies. The detector is equipped with separate channels to measure the low and high altitude signals from both the 532 nm and 355 nm as well as the Raman shifted returns due to N/sub 2/ and H/sub 2/O (660 nm and 607 nm). The LAMP lidar was first deployed on board the RV Polarstem during the LADIMAS campaign and has since been in operation in the United States. Scattering due to stratospheric aerosols from volcanic activity has been studied across different latitudes and over time. The effects due to Mt. Pinatubo (Philippines) and Mt. Hudson (Chile) eruptions have been compared.<<ETX>>\",\"PeriodicalId\":274878,\"journal\":{\"name\":\"Conference Proceedings Second Topical Symposium on Combined Optical-Microwave Earth and Atmosphere Sensing\",\"volume\":\"191 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference Proceedings Second Topical Symposium on Combined Optical-Microwave Earth and Atmosphere Sensing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COMEAS.1995.472375\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Proceedings Second Topical Symposium on Combined Optical-Microwave Earth and Atmosphere Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMEAS.1995.472375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

平流层气溶胶对地球气候和平流层的化学成分都有重大影响。由于大规模火山喷发,注入平流层的火山气溶胶进一步增强了对气候的影响,并可能导致中纬度平流层的臭氧耗损。作者的研究主要集中在火山活动前后平流层气溶胶分布的变化。研究了平流层气溶胶的粒子后向散射和其他特性,以描述它们的变化。宾夕法尼亚州立大学瑞利/拉曼激光雷达采用Nd:YAG激光,发射频率为两倍(532 nm)和三倍(3555 nm)。该探测器具有独立的通道,可测量532 nm和3555 nm的低空和高空信号,以及由于N/sub /和H/sub /O (660 nm和607 nm)引起的拉曼位移返回。LAMP激光雷达在LADIMAS活动期间首次部署在RV Polarstem上,此后一直在美国投入使用。火山活动引起的平流层气溶胶散射已在不同纬度和不同时间进行了研究。皮纳图博火山(菲律宾)和哈德逊火山(智利)喷发的影响进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optical properties and distribution of stratospheric aerosols
Stratospheric aerosols significantly influence both the Earth's climate and the chemical composition of the stratosphere. Volcanic aerosols injected into the stratosphere, due to large volcanic eruptions, further enhance the effect on the climate and possibly lead to ozone depletion in the middle latitude stratosphere. The authors studies focus primarily on the change in the distribution of stratospheric aerosols before and after volcanic activity. The particle backscatter and other properties of stratospheric aerosols are studied to describe their variations. The Penn State Rayleigh/Raman lidar utilizes a Nd:YAG laser transmitting at both the doubled (532 nm) and tripled (355 nm) frequencies. The detector is equipped with separate channels to measure the low and high altitude signals from both the 532 nm and 355 nm as well as the Raman shifted returns due to N/sub 2/ and H/sub 2/O (660 nm and 607 nm). The LAMP lidar was first deployed on board the RV Polarstem during the LADIMAS campaign and has since been in operation in the United States. Scattering due to stratospheric aerosols from volcanic activity has been studied across different latitudes and over time. The effects due to Mt. Pinatubo (Philippines) and Mt. Hudson (Chile) eruptions have been compared.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信