错误消息的频率分布

David Pritchard
{"title":"错误消息的频率分布","authors":"David Pritchard","doi":"10.1145/2846680.2846681","DOIUrl":null,"url":null,"abstract":"Which programming error messages are the most common? We investigate this question, motivated by writing error explanations for novices. We consider large data sets in Python and Java that include both syntax and run-time errors. In both data sets, after grouping essentially identical messages, the error message frequencies empirically resemble Zipf-Mandelbrot distributions. We use a maximum-likelihood approach to fit the distribution parameters. This gives one possible way to contrast languages or compilers quantitatively.","PeriodicalId":213941,"journal":{"name":"Proceedings of the 6th Workshop on Evaluation and Usability of Programming Languages and Tools","volume":"12 18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Frequency distribution of error messages\",\"authors\":\"David Pritchard\",\"doi\":\"10.1145/2846680.2846681\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Which programming error messages are the most common? We investigate this question, motivated by writing error explanations for novices. We consider large data sets in Python and Java that include both syntax and run-time errors. In both data sets, after grouping essentially identical messages, the error message frequencies empirically resemble Zipf-Mandelbrot distributions. We use a maximum-likelihood approach to fit the distribution parameters. This gives one possible way to contrast languages or compilers quantitatively.\",\"PeriodicalId\":213941,\"journal\":{\"name\":\"Proceedings of the 6th Workshop on Evaluation and Usability of Programming Languages and Tools\",\"volume\":\"12 18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 6th Workshop on Evaluation and Usability of Programming Languages and Tools\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2846680.2846681\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th Workshop on Evaluation and Usability of Programming Languages and Tools","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2846680.2846681","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

哪些编程错误消息是最常见的?我们调查这个问题,动机是为新手写错误解释。我们考虑Python和Java中包含语法和运行时错误的大型数据集。在这两个数据集中,在对本质上相同的消息进行分组之后,错误消息的频率在经验上类似于Zipf-Mandelbrot分布。我们使用最大似然方法拟合分布参数。这提供了一种定量对比语言或编译器的可能方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Frequency distribution of error messages
Which programming error messages are the most common? We investigate this question, motivated by writing error explanations for novices. We consider large data sets in Python and Java that include both syntax and run-time errors. In both data sets, after grouping essentially identical messages, the error message frequencies empirically resemble Zipf-Mandelbrot distributions. We use a maximum-likelihood approach to fit the distribution parameters. This gives one possible way to contrast languages or compilers quantitatively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信