面向学习分析的数据归档解决方案

Sarah Taylor, Pablo Munguia
{"title":"面向学习分析的数据归档解决方案","authors":"Sarah Taylor, Pablo Munguia","doi":"10.1145/3170358.3170415","DOIUrl":null,"url":null,"abstract":"Data solutions in the teaching and learning space are in need of pro-active innovations in data management, to ensure that systems for learning analytics can scale up to match the size of datasets now available. Here, we illustrate the scale at which a Learning Management System (LMS) accumulates data, and discuss the barriers to using this data for in-depth analyses. We illustrate the exponential growth of our LMS data to represent a single example dataset, and highlight the broader need for taking a pro-active approach to dimensional modelling in learning analytics, anticipating that common learning analytics questions will be computationally expensive, and that the most useful data structures for learning analytics will not necessarily follow those of the source dataset.","PeriodicalId":437369,"journal":{"name":"Proceedings of the 8th International Conference on Learning Analytics and Knowledge","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Towards a data archiving solution for learning analytics\",\"authors\":\"Sarah Taylor, Pablo Munguia\",\"doi\":\"10.1145/3170358.3170415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data solutions in the teaching and learning space are in need of pro-active innovations in data management, to ensure that systems for learning analytics can scale up to match the size of datasets now available. Here, we illustrate the scale at which a Learning Management System (LMS) accumulates data, and discuss the barriers to using this data for in-depth analyses. We illustrate the exponential growth of our LMS data to represent a single example dataset, and highlight the broader need for taking a pro-active approach to dimensional modelling in learning analytics, anticipating that common learning analytics questions will be computationally expensive, and that the most useful data structures for learning analytics will not necessarily follow those of the source dataset.\",\"PeriodicalId\":437369,\"journal\":{\"name\":\"Proceedings of the 8th International Conference on Learning Analytics and Knowledge\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 8th International Conference on Learning Analytics and Knowledge\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3170358.3170415\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 8th International Conference on Learning Analytics and Knowledge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3170358.3170415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

教学和学习领域的数据解决方案需要在数据管理方面进行主动创新,以确保学习分析系统能够扩大规模,以匹配现有数据集的规模。在这里,我们说明了学习管理系统(LMS)积累数据的规模,并讨论了使用这些数据进行深入分析的障碍。我们说明了LMS数据的指数增长,以表示单个示例数据集,并强调了在学习分析中采用主动方法进行维度建模的更广泛需求,预计常见的学习分析问题将在计算上昂贵,并且学习分析中最有用的数据结构不一定遵循源数据集的数据结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards a data archiving solution for learning analytics
Data solutions in the teaching and learning space are in need of pro-active innovations in data management, to ensure that systems for learning analytics can scale up to match the size of datasets now available. Here, we illustrate the scale at which a Learning Management System (LMS) accumulates data, and discuss the barriers to using this data for in-depth analyses. We illustrate the exponential growth of our LMS data to represent a single example dataset, and highlight the broader need for taking a pro-active approach to dimensional modelling in learning analytics, anticipating that common learning analytics questions will be computationally expensive, and that the most useful data structures for learning analytics will not necessarily follow those of the source dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信