基于边缘检测器的盲运动模糊参数估计

Robert Grou-Szabo, T. Shibata
{"title":"基于边缘检测器的盲运动模糊参数估计","authors":"Robert Grou-Szabo, T. Shibata","doi":"10.1109/ICSPCS.2009.5306409","DOIUrl":null,"url":null,"abstract":"A method to determine the parameters of directional motion blurring noise using edge detectors is developed in this paper. Once the parameters characterizing the blurring noise are known, the point spread function (PSF) of the blurring noise can be reconstructed and the noise subsequently eliminated. The algorithm uses an edge detector with dynamic thresholding to extract edge information from an image at several threshold values. First the blurring angle is determined by rotating the image prior to edge extraction and the angle with the highest difference in edge count and its corresponding perpendicular angle is determined and considered to be the angle at which shifting has occurred. After the blurring shifting angle has been found, the pixel displacement length is determined using an iterative blind deconvolution process. Finally, once both the shifting angle and pixel displacement length are known the point spread function (PSF) of the blurring noise corrupting the image can be reconstituted.","PeriodicalId":356711,"journal":{"name":"2009 3rd International Conference on Signal Processing and Communication Systems","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Blind motion-blur parameter estimation using edge detectors\",\"authors\":\"Robert Grou-Szabo, T. Shibata\",\"doi\":\"10.1109/ICSPCS.2009.5306409\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A method to determine the parameters of directional motion blurring noise using edge detectors is developed in this paper. Once the parameters characterizing the blurring noise are known, the point spread function (PSF) of the blurring noise can be reconstructed and the noise subsequently eliminated. The algorithm uses an edge detector with dynamic thresholding to extract edge information from an image at several threshold values. First the blurring angle is determined by rotating the image prior to edge extraction and the angle with the highest difference in edge count and its corresponding perpendicular angle is determined and considered to be the angle at which shifting has occurred. After the blurring shifting angle has been found, the pixel displacement length is determined using an iterative blind deconvolution process. Finally, once both the shifting angle and pixel displacement length are known the point spread function (PSF) of the blurring noise corrupting the image can be reconstituted.\",\"PeriodicalId\":356711,\"journal\":{\"name\":\"2009 3rd International Conference on Signal Processing and Communication Systems\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 3rd International Conference on Signal Processing and Communication Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSPCS.2009.5306409\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 3rd International Conference on Signal Processing and Communication Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSPCS.2009.5306409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种利用边缘检测器确定定向运动模糊噪声参数的方法。一旦确定了表征模糊噪声的参数,就可以重建模糊噪声的点扩散函数,从而消除噪声。该算法使用带有动态阈值的边缘检测器在多个阈值处提取图像的边缘信息。首先,在提取边缘之前,通过旋转图像来确定模糊角度,并确定边缘计数差异最大的角度及其对应的垂直角度,并将其视为发生移位的角度。在确定模糊位移角后,采用迭代盲反卷积法确定像素位移长度。最后,在确定偏移角度和像素位移长度的情况下,重建干扰图像的模糊噪声的点扩散函数(PSF)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Blind motion-blur parameter estimation using edge detectors
A method to determine the parameters of directional motion blurring noise using edge detectors is developed in this paper. Once the parameters characterizing the blurring noise are known, the point spread function (PSF) of the blurring noise can be reconstructed and the noise subsequently eliminated. The algorithm uses an edge detector with dynamic thresholding to extract edge information from an image at several threshold values. First the blurring angle is determined by rotating the image prior to edge extraction and the angle with the highest difference in edge count and its corresponding perpendicular angle is determined and considered to be the angle at which shifting has occurred. After the blurring shifting angle has been found, the pixel displacement length is determined using an iterative blind deconvolution process. Finally, once both the shifting angle and pixel displacement length are known the point spread function (PSF) of the blurring noise corrupting the image can be reconstituted.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信