使用本体和最近邻聚类的概念摘要

Elaheh Gavagsaz, Mahmoud Naghibzadeh, Mehrdad Jalali
{"title":"使用本体和最近邻聚类的概念摘要","authors":"Elaheh Gavagsaz, Mahmoud Naghibzadeh, Mehrdad Jalali","doi":"10.1109/STAIR.2011.5995756","DOIUrl":null,"url":null,"abstract":"Conceptual summarization aims to provide a database which comprises an abstraction of the entire document content. To effectively provide conceptual summarization, we have presented an approach that is used for conceptual querying. The approach is based on utilizing an ontology for similarity measure between concepts and the nearest neighborhood clustering algorithm for concepts clustering. The results show an improvement in the runtime and tolerant as regards noise.","PeriodicalId":376671,"journal":{"name":"2011 International Conference on Semantic Technology and Information Retrieval","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Conceptual summarization using ontologies and nearest neighborhood clustering\",\"authors\":\"Elaheh Gavagsaz, Mahmoud Naghibzadeh, Mehrdad Jalali\",\"doi\":\"10.1109/STAIR.2011.5995756\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conceptual summarization aims to provide a database which comprises an abstraction of the entire document content. To effectively provide conceptual summarization, we have presented an approach that is used for conceptual querying. The approach is based on utilizing an ontology for similarity measure between concepts and the nearest neighborhood clustering algorithm for concepts clustering. The results show an improvement in the runtime and tolerant as regards noise.\",\"PeriodicalId\":376671,\"journal\":{\"name\":\"2011 International Conference on Semantic Technology and Information Retrieval\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Semantic Technology and Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/STAIR.2011.5995756\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Semantic Technology and Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STAIR.2011.5995756","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

概念摘要旨在提供一个包含整个文档内容抽象的数据库。为了有效地提供概念摘要,我们提出了一种用于概念查询的方法。该方法利用本体度量概念之间的相似性,利用最近邻聚类算法进行概念聚类。结果表明,该方法在运行时间和对噪声的容忍度方面都有改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Conceptual summarization using ontologies and nearest neighborhood clustering
Conceptual summarization aims to provide a database which comprises an abstraction of the entire document content. To effectively provide conceptual summarization, we have presented an approach that is used for conceptual querying. The approach is based on utilizing an ontology for similarity measure between concepts and the nearest neighborhood clustering algorithm for concepts clustering. The results show an improvement in the runtime and tolerant as regards noise.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信