通过计算样本熵

Edoardo Spairani, Ana Belén Carballo Leyenda, J. Rodríguez-Marroyo, G. D. Toma, G. Magenes
{"title":"通过计算样本熵","authors":"Edoardo Spairani, Ana Belén Carballo Leyenda, J. Rodríguez-Marroyo, G. D. Toma, G. Magenes","doi":"10.1109/BSN56160.2022.9928483","DOIUrl":null,"url":null,"abstract":"In the present study we propose a novel method to automatically assess the quality of ECG signals collected through a wearable device in typical mountain rescuers activities. ECGs signals have been obtained during sessions of programmed field tests at the Bormio Ski Resort (Valtellina, Lombardy, Italy) in the month of March. Here, following the defined protocol, a group of 15 mountain rescuers has carried out daily rescuers’ activities, while wearing wearable textile system by Smartex Srl. The test protocol was designed to simulate the real physiological demands of mountain rescuers during their emergency deployments. Among the activities performed rescuers had to walk up and down hill in snow-covered trails, carrying stretchers onto which simulated victims were located etc… To infer the quality of ECG signals recorded we developed an algorithm for the automatic evaluation of collected signal deterioration. This method is based on the analysis of regularity of ECGs’ P-QRS-T complexes pattern. To estimate the maintenance of typical ECGs pattern shape, Sample Entropy (SampEn) was computed in moving fixed-length windows sliding along the signal, obtained after applying wavelet transform of the row ECG. The SampEn indices series was then thresholded to spot ECG points where P-QRS-T complexes were more or less easy to identify, respect to points where signal quality was completely deteriorated. Moreover, we evaluated signal quality maintenance while performing low and high intensity activities.","PeriodicalId":150990,"journal":{"name":"2022 IEEE-EMBS International Conference on Wearable and Implantable Body Sensor Networks (BSN)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mountain Rescuers through the computation of Sample Entropy\",\"authors\":\"Edoardo Spairani, Ana Belén Carballo Leyenda, J. Rodríguez-Marroyo, G. D. Toma, G. Magenes\",\"doi\":\"10.1109/BSN56160.2022.9928483\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present study we propose a novel method to automatically assess the quality of ECG signals collected through a wearable device in typical mountain rescuers activities. ECGs signals have been obtained during sessions of programmed field tests at the Bormio Ski Resort (Valtellina, Lombardy, Italy) in the month of March. Here, following the defined protocol, a group of 15 mountain rescuers has carried out daily rescuers’ activities, while wearing wearable textile system by Smartex Srl. The test protocol was designed to simulate the real physiological demands of mountain rescuers during their emergency deployments. Among the activities performed rescuers had to walk up and down hill in snow-covered trails, carrying stretchers onto which simulated victims were located etc… To infer the quality of ECG signals recorded we developed an algorithm for the automatic evaluation of collected signal deterioration. This method is based on the analysis of regularity of ECGs’ P-QRS-T complexes pattern. To estimate the maintenance of typical ECGs pattern shape, Sample Entropy (SampEn) was computed in moving fixed-length windows sliding along the signal, obtained after applying wavelet transform of the row ECG. The SampEn indices series was then thresholded to spot ECG points where P-QRS-T complexes were more or less easy to identify, respect to points where signal quality was completely deteriorated. Moreover, we evaluated signal quality maintenance while performing low and high intensity activities.\",\"PeriodicalId\":150990,\"journal\":{\"name\":\"2022 IEEE-EMBS International Conference on Wearable and Implantable Body Sensor Networks (BSN)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE-EMBS International Conference on Wearable and Implantable Body Sensor Networks (BSN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BSN56160.2022.9928483\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE-EMBS International Conference on Wearable and Implantable Body Sensor Networks (BSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BSN56160.2022.9928483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们提出了一种新的方法来自动评估在典型的山地救援活动中通过可穿戴设备收集的心电信号的质量。3月份在Bormio滑雪胜地(Valtellina,伦巴第,意大利)进行的计划现场测试期间获得了心电图信号。在这里,15名山地救援人员穿着Smartex公司的可穿戴纺织系统,按照制定的协议进行日常救援活动。该测试方案旨在模拟山区救援人员在紧急部署期间的真实生理需求。在进行的活动中,救援人员必须在积雪覆盖的小径上上下山坡,搬运担架,将模拟受害者安置在担架上等等。为了推断记录的心电信号的质量,我们开发了一种自动评估收集到的信号恶化的算法。该方法基于对心电图P-QRS-T复合物模式的规律性分析。为了估计典型心电模式形状的维持,对行心电进行小波变换后,在沿信号滑动的固定长度窗口中计算样本熵(SampEn)。然后对SampEn指数系列进行阈值化,以发现P-QRS-T复合物或多或少容易识别的ECG点,相对于信号质量完全恶化的点。此外,我们评估了在执行低强度和高强度活动时的信号质量维护。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mountain Rescuers through the computation of Sample Entropy
In the present study we propose a novel method to automatically assess the quality of ECG signals collected through a wearable device in typical mountain rescuers activities. ECGs signals have been obtained during sessions of programmed field tests at the Bormio Ski Resort (Valtellina, Lombardy, Italy) in the month of March. Here, following the defined protocol, a group of 15 mountain rescuers has carried out daily rescuers’ activities, while wearing wearable textile system by Smartex Srl. The test protocol was designed to simulate the real physiological demands of mountain rescuers during their emergency deployments. Among the activities performed rescuers had to walk up and down hill in snow-covered trails, carrying stretchers onto which simulated victims were located etc… To infer the quality of ECG signals recorded we developed an algorithm for the automatic evaluation of collected signal deterioration. This method is based on the analysis of regularity of ECGs’ P-QRS-T complexes pattern. To estimate the maintenance of typical ECGs pattern shape, Sample Entropy (SampEn) was computed in moving fixed-length windows sliding along the signal, obtained after applying wavelet transform of the row ECG. The SampEn indices series was then thresholded to spot ECG points where P-QRS-T complexes were more or less easy to identify, respect to points where signal quality was completely deteriorated. Moreover, we evaluated signal quality maintenance while performing low and high intensity activities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信