基于偏好嵌入的查询音乐推荐

Chih-Ming Chen, Ming-Feng Tsai, Yu-Ching Lin, Yi-Hsuan Yang
{"title":"基于偏好嵌入的查询音乐推荐","authors":"Chih-Ming Chen, Ming-Feng Tsai, Yu-Ching Lin, Yi-Hsuan Yang","doi":"10.1145/2959100.2959169","DOIUrl":null,"url":null,"abstract":"A common scenario considered in recommender systems is to predict a user's preferences on unseen items based on his/her preferences on observed items. A major limitation of this scenario is that a user might be interested in different things each time when using the system, but there is no way to allow the user to actively alter or adjust the recommended results. To address this issue, we propose the idea of \"query-based recommendation\" that allows a user to specify his/her search intention while exploring new items, thereby incorporating the concept of information retrieval into recommendation systems. Moreover, the idea is more desirable when the user intention can be expressed in different ways. Take music recommendation as an example: the proposed system allows a user to explore new song tracks by specifying either a track, an album, or an artist. To enable such heterogeneous queries in a recommender system, we present a novel technique called \"Heterogeneous Preference Embedding\" to encode user preference and query intention into low-dimensional vector spaces. Then, with simple search methods or similarity calculations, we can use the encoded representation of queries to generate recommendations. This method is fairly flexible and it is easy to add other types of information when available. Evaluations on three music listening datasets confirm the effectiveness of the proposed method over the state-of-the-art matrix factorization and network embedding methods.","PeriodicalId":315651,"journal":{"name":"Proceedings of the 10th ACM Conference on Recommender Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"56","resultStr":"{\"title\":\"Query-based Music Recommendations via Preference Embedding\",\"authors\":\"Chih-Ming Chen, Ming-Feng Tsai, Yu-Ching Lin, Yi-Hsuan Yang\",\"doi\":\"10.1145/2959100.2959169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A common scenario considered in recommender systems is to predict a user's preferences on unseen items based on his/her preferences on observed items. A major limitation of this scenario is that a user might be interested in different things each time when using the system, but there is no way to allow the user to actively alter or adjust the recommended results. To address this issue, we propose the idea of \\\"query-based recommendation\\\" that allows a user to specify his/her search intention while exploring new items, thereby incorporating the concept of information retrieval into recommendation systems. Moreover, the idea is more desirable when the user intention can be expressed in different ways. Take music recommendation as an example: the proposed system allows a user to explore new song tracks by specifying either a track, an album, or an artist. To enable such heterogeneous queries in a recommender system, we present a novel technique called \\\"Heterogeneous Preference Embedding\\\" to encode user preference and query intention into low-dimensional vector spaces. Then, with simple search methods or similarity calculations, we can use the encoded representation of queries to generate recommendations. This method is fairly flexible and it is easy to add other types of information when available. Evaluations on three music listening datasets confirm the effectiveness of the proposed method over the state-of-the-art matrix factorization and network embedding methods.\",\"PeriodicalId\":315651,\"journal\":{\"name\":\"Proceedings of the 10th ACM Conference on Recommender Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"56\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 10th ACM Conference on Recommender Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2959100.2959169\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th ACM Conference on Recommender Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2959100.2959169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 56

摘要

推荐系统中考虑的一个常见场景是根据用户对观察到的物品的偏好来预测他/她对未见过的物品的偏好。这种场景的一个主要限制是,用户在每次使用系统时可能对不同的东西感兴趣,但是没有办法允许用户主动更改或调整推荐的结果。为了解决这个问题,我们提出了“基于查询的推荐”的想法,允许用户在探索新项目时指定他/她的搜索意图,从而将信息检索的概念纳入推荐系统。此外,当用户意图可以以不同的方式表达时,这个想法更可取。以音乐推荐为例:所提议的系统允许用户通过指定曲目、专辑或艺术家来探索新歌曲目。为了在推荐系统中实现这种异构查询,我们提出了一种称为“异构偏好嵌入”的新技术,将用户偏好和查询意图编码到低维向量空间中。然后,通过简单的搜索方法或相似度计算,我们可以使用查询的编码表示来生成推荐。这种方法相当灵活,并且在可用时很容易添加其他类型的信息。对三个音乐收听数据集的评估证实了该方法优于最先进的矩阵分解和网络嵌入方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Query-based Music Recommendations via Preference Embedding
A common scenario considered in recommender systems is to predict a user's preferences on unseen items based on his/her preferences on observed items. A major limitation of this scenario is that a user might be interested in different things each time when using the system, but there is no way to allow the user to actively alter or adjust the recommended results. To address this issue, we propose the idea of "query-based recommendation" that allows a user to specify his/her search intention while exploring new items, thereby incorporating the concept of information retrieval into recommendation systems. Moreover, the idea is more desirable when the user intention can be expressed in different ways. Take music recommendation as an example: the proposed system allows a user to explore new song tracks by specifying either a track, an album, or an artist. To enable such heterogeneous queries in a recommender system, we present a novel technique called "Heterogeneous Preference Embedding" to encode user preference and query intention into low-dimensional vector spaces. Then, with simple search methods or similarity calculations, we can use the encoded representation of queries to generate recommendations. This method is fairly flexible and it is easy to add other types of information when available. Evaluations on three music listening datasets confirm the effectiveness of the proposed method over the state-of-the-art matrix factorization and network embedding methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信