结合知识蒸馏和迁移学习的可见光和热像仪人物分类传感器融合

Vijay John, Yasutomo Kawanishi
{"title":"结合知识蒸馏和迁移学习的可见光和热像仪人物分类传感器融合","authors":"Vijay John, Yasutomo Kawanishi","doi":"10.23919/MVA57639.2023.10215818","DOIUrl":null,"url":null,"abstract":"Visible and thermal camera-based sensor fusion has shown to address the limitations and enhance the robustness of visible camera-based person classification. In this paper, we propose to further enhance the classification accuracy of visible-thermal person classification using transfer learning, knowledge distillation, and the vision transformer. In our work, the visible-thermal person classifier is implemented using the vision transformer. The proposed classifier is trained using the transfer learning and knowledge distillation techniques. To train the proposed classifier, visible and thermal teacher models are implemented using the vision transformers. The multimodal classifier learns from the two teachers using a novel loss function which incorporates the knowledge distillation. The proposed method is validated on the public Speaking Faces dataset. A comparative analysis with baseline algorithms and an ablation study is performed. The results show that the proposed framework reports an enhanced classification accuracy.","PeriodicalId":338734,"journal":{"name":"2023 18th International Conference on Machine Vision and Applications (MVA)","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combining Knowledge Distillation and Transfer Learning for Sensor Fusion in Visible and Thermal Camera-based Person Classification\",\"authors\":\"Vijay John, Yasutomo Kawanishi\",\"doi\":\"10.23919/MVA57639.2023.10215818\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Visible and thermal camera-based sensor fusion has shown to address the limitations and enhance the robustness of visible camera-based person classification. In this paper, we propose to further enhance the classification accuracy of visible-thermal person classification using transfer learning, knowledge distillation, and the vision transformer. In our work, the visible-thermal person classifier is implemented using the vision transformer. The proposed classifier is trained using the transfer learning and knowledge distillation techniques. To train the proposed classifier, visible and thermal teacher models are implemented using the vision transformers. The multimodal classifier learns from the two teachers using a novel loss function which incorporates the knowledge distillation. The proposed method is validated on the public Speaking Faces dataset. A comparative analysis with baseline algorithms and an ablation study is performed. The results show that the proposed framework reports an enhanced classification accuracy.\",\"PeriodicalId\":338734,\"journal\":{\"name\":\"2023 18th International Conference on Machine Vision and Applications (MVA)\",\"volume\":\"88 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 18th International Conference on Machine Vision and Applications (MVA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/MVA57639.2023.10215818\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 18th International Conference on Machine Vision and Applications (MVA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/MVA57639.2023.10215818","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于可见光和热像仪的传感器融合解决了基于可见光相机的人物分类的局限性,增强了鲁棒性。本文提出利用迁移学习、知识升华和视觉变换等方法进一步提高视热人物分类的分类精度。在我们的工作中,使用视觉转换器实现了可视热人分类器。该分类器使用迁移学习和知识蒸馏技术进行训练。为了训练所提出的分类器,使用视觉转换器实现了可视和热教师模型。多模态分类器使用一种包含知识蒸馏的新型损失函数从两位老师那里学习。在公共演讲面孔数据集上对该方法进行了验证。与基线算法和消融研究进行比较分析。结果表明,该框架具有较好的分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combining Knowledge Distillation and Transfer Learning for Sensor Fusion in Visible and Thermal Camera-based Person Classification
Visible and thermal camera-based sensor fusion has shown to address the limitations and enhance the robustness of visible camera-based person classification. In this paper, we propose to further enhance the classification accuracy of visible-thermal person classification using transfer learning, knowledge distillation, and the vision transformer. In our work, the visible-thermal person classifier is implemented using the vision transformer. The proposed classifier is trained using the transfer learning and knowledge distillation techniques. To train the proposed classifier, visible and thermal teacher models are implemented using the vision transformers. The multimodal classifier learns from the two teachers using a novel loss function which incorporates the knowledge distillation. The proposed method is validated on the public Speaking Faces dataset. A comparative analysis with baseline algorithms and an ablation study is performed. The results show that the proposed framework reports an enhanced classification accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信