{"title":"基于K-means与SVM结合的高分辨率遥感影像道路提取","authors":"Yanmei Wang, Wei Jiang, Pengfei Feng","doi":"10.1117/12.2671264","DOIUrl":null,"url":null,"abstract":"Extracting road information from high-resolution remote sensing images is an important way to obtain basic data of geographic information. In this paper, firstly, the shortcomings of K-means and SVM are analyzed, and then the road information is extracted by the algorithm combining K-means and SVM. The experimental results show that the combined algorithm has higher accuracy and lower missing error than the single algorithm. The experimental results can provide some technical support for future road information extraction.","PeriodicalId":120866,"journal":{"name":"Artificial Intelligence and Big Data Forum","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Road extraction from high-resolution remote sensing images based on the combination of K-means and SVM\",\"authors\":\"Yanmei Wang, Wei Jiang, Pengfei Feng\",\"doi\":\"10.1117/12.2671264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extracting road information from high-resolution remote sensing images is an important way to obtain basic data of geographic information. In this paper, firstly, the shortcomings of K-means and SVM are analyzed, and then the road information is extracted by the algorithm combining K-means and SVM. The experimental results show that the combined algorithm has higher accuracy and lower missing error than the single algorithm. The experimental results can provide some technical support for future road information extraction.\",\"PeriodicalId\":120866,\"journal\":{\"name\":\"Artificial Intelligence and Big Data Forum\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence and Big Data Forum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2671264\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence and Big Data Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2671264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Road extraction from high-resolution remote sensing images based on the combination of K-means and SVM
Extracting road information from high-resolution remote sensing images is an important way to obtain basic data of geographic information. In this paper, firstly, the shortcomings of K-means and SVM are analyzed, and then the road information is extracted by the algorithm combining K-means and SVM. The experimental results show that the combined algorithm has higher accuracy and lower missing error than the single algorithm. The experimental results can provide some technical support for future road information extraction.