基于K-means与SVM结合的高分辨率遥感影像道路提取

Yanmei Wang, Wei Jiang, Pengfei Feng
{"title":"基于K-means与SVM结合的高分辨率遥感影像道路提取","authors":"Yanmei Wang, Wei Jiang, Pengfei Feng","doi":"10.1117/12.2671264","DOIUrl":null,"url":null,"abstract":"Extracting road information from high-resolution remote sensing images is an important way to obtain basic data of geographic information. In this paper, firstly, the shortcomings of K-means and SVM are analyzed, and then the road information is extracted by the algorithm combining K-means and SVM. The experimental results show that the combined algorithm has higher accuracy and lower missing error than the single algorithm. The experimental results can provide some technical support for future road information extraction.","PeriodicalId":120866,"journal":{"name":"Artificial Intelligence and Big Data Forum","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Road extraction from high-resolution remote sensing images based on the combination of K-means and SVM\",\"authors\":\"Yanmei Wang, Wei Jiang, Pengfei Feng\",\"doi\":\"10.1117/12.2671264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extracting road information from high-resolution remote sensing images is an important way to obtain basic data of geographic information. In this paper, firstly, the shortcomings of K-means and SVM are analyzed, and then the road information is extracted by the algorithm combining K-means and SVM. The experimental results show that the combined algorithm has higher accuracy and lower missing error than the single algorithm. The experimental results can provide some technical support for future road information extraction.\",\"PeriodicalId\":120866,\"journal\":{\"name\":\"Artificial Intelligence and Big Data Forum\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence and Big Data Forum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2671264\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence and Big Data Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2671264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

从高分辨率遥感影像中提取道路信息是获取地理信息基础数据的重要途径。本文首先分析了K-means和SVM的不足,然后采用K-means和SVM相结合的算法提取道路信息。实验结果表明,与单一算法相比,组合算法具有更高的精度和更小的缺失误差。实验结果可为今后道路信息的提取提供一定的技术支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Road extraction from high-resolution remote sensing images based on the combination of K-means and SVM
Extracting road information from high-resolution remote sensing images is an important way to obtain basic data of geographic information. In this paper, firstly, the shortcomings of K-means and SVM are analyzed, and then the road information is extracted by the algorithm combining K-means and SVM. The experimental results show that the combined algorithm has higher accuracy and lower missing error than the single algorithm. The experimental results can provide some technical support for future road information extraction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信