一种新的鲁棒中心误差熵培养卡尔曼滤波器

Baojian Yang, Lu Cao, Lingwei Li, Chen Jiang, Dechao Ran, Bing Xiao
{"title":"一种新的鲁棒中心误差熵培养卡尔曼滤波器","authors":"Baojian Yang, Lu Cao, Lingwei Li, Chen Jiang, Dechao Ran, Bing Xiao","doi":"10.1109/ICCSSE52761.2021.9545184","DOIUrl":null,"url":null,"abstract":"The heavy-tailed non-Gaussian noise often appears in the actual system and the classical cubature Kalman filter (CKF) algorithm will have reduced filtering accuracy or even filtering divergence in this condition. To make the CKF algorithm more robust, the centered error entropy cubature Kalman filter (CEECKF) algorithm is derived by combining the Spherical-Radial cubature rule and the centered error entropy (CEE) criterion. The proposed algorithm uses the cubature rule to obtain the one-step prediction state mean and covariance and then uses the CEE criterion to update the posterior state. The application in attitude determination shows the effectiveness of the algorithm.","PeriodicalId":143697,"journal":{"name":"2021 IEEE 7th International Conference on Control Science and Systems Engineering (ICCSSE)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A New Robust Centered Error Entropy Cubature Kalman Filter\",\"authors\":\"Baojian Yang, Lu Cao, Lingwei Li, Chen Jiang, Dechao Ran, Bing Xiao\",\"doi\":\"10.1109/ICCSSE52761.2021.9545184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The heavy-tailed non-Gaussian noise often appears in the actual system and the classical cubature Kalman filter (CKF) algorithm will have reduced filtering accuracy or even filtering divergence in this condition. To make the CKF algorithm more robust, the centered error entropy cubature Kalman filter (CEECKF) algorithm is derived by combining the Spherical-Radial cubature rule and the centered error entropy (CEE) criterion. The proposed algorithm uses the cubature rule to obtain the one-step prediction state mean and covariance and then uses the CEE criterion to update the posterior state. The application in attitude determination shows the effectiveness of the algorithm.\",\"PeriodicalId\":143697,\"journal\":{\"name\":\"2021 IEEE 7th International Conference on Control Science and Systems Engineering (ICCSSE)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 7th International Conference on Control Science and Systems Engineering (ICCSSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCSSE52761.2021.9545184\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 7th International Conference on Control Science and Systems Engineering (ICCSSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSSE52761.2021.9545184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在实际系统中经常出现重尾非高斯噪声,经典的cubature Kalman filter (CKF)算法在这种情况下会降低滤波精度甚至出现滤波发散。为了提高CKF算法的鲁棒性,将球-径向立方体规则与中心误差熵准则相结合,导出了中心误差熵立方体卡尔曼滤波(CEECKF)算法。该算法首先利用培养规则获得一步预测状态均值和协方差,然后利用CEE准则更新后验状态。在姿态确定中的应用表明了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Robust Centered Error Entropy Cubature Kalman Filter
The heavy-tailed non-Gaussian noise often appears in the actual system and the classical cubature Kalman filter (CKF) algorithm will have reduced filtering accuracy or even filtering divergence in this condition. To make the CKF algorithm more robust, the centered error entropy cubature Kalman filter (CEECKF) algorithm is derived by combining the Spherical-Radial cubature rule and the centered error entropy (CEE) criterion. The proposed algorithm uses the cubature rule to obtain the one-step prediction state mean and covariance and then uses the CEE criterion to update the posterior state. The application in attitude determination shows the effectiveness of the algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信