{"title":"k-SAT的复杂度","authors":"R. Impagliazzo, R. Paturi","doi":"10.1109/CCC.1999.766282","DOIUrl":null,"url":null,"abstract":"The problem of k-SAT is to determine if the given k-CNF has a satisfying solution. It is a celebrated open question as to whether it requires exponential time to solve k-SAT for k/spl ges/3. Define s/sub k/ (for k/spl ges/3) to be the infimum of {/spl delta/: there exists an O(2/sup /spl delta/n/) algorithm for solving k-SAT}. Define ETH (Exponential-Time Hypothesis) for k-SAT as follows: for k/spl ges/3, s/sub k/>0. In other words, for k/spl ges/3, k-SA does not have a subexponential-time algorithm. In this paper we show that s/sub k/ is an increasing sequence assuming ETH for k-SAT: Let s/sub /spl infin// be the limit of s/sub k/. We in fact show that s/sub k//spl les/(1-d/k) s/sub /spl infin// for some constant d>0.","PeriodicalId":432015,"journal":{"name":"Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1277","resultStr":"{\"title\":\"Complexity of k-SAT\",\"authors\":\"R. Impagliazzo, R. Paturi\",\"doi\":\"10.1109/CCC.1999.766282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of k-SAT is to determine if the given k-CNF has a satisfying solution. It is a celebrated open question as to whether it requires exponential time to solve k-SAT for k/spl ges/3. Define s/sub k/ (for k/spl ges/3) to be the infimum of {/spl delta/: there exists an O(2/sup /spl delta/n/) algorithm for solving k-SAT}. Define ETH (Exponential-Time Hypothesis) for k-SAT as follows: for k/spl ges/3, s/sub k/>0. In other words, for k/spl ges/3, k-SA does not have a subexponential-time algorithm. In this paper we show that s/sub k/ is an increasing sequence assuming ETH for k-SAT: Let s/sub /spl infin// be the limit of s/sub k/. We in fact show that s/sub k//spl les/(1-d/k) s/sub /spl infin// for some constant d>0.\",\"PeriodicalId\":432015,\"journal\":{\"name\":\"Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1277\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCC.1999.766282\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCC.1999.766282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The problem of k-SAT is to determine if the given k-CNF has a satisfying solution. It is a celebrated open question as to whether it requires exponential time to solve k-SAT for k/spl ges/3. Define s/sub k/ (for k/spl ges/3) to be the infimum of {/spl delta/: there exists an O(2/sup /spl delta/n/) algorithm for solving k-SAT}. Define ETH (Exponential-Time Hypothesis) for k-SAT as follows: for k/spl ges/3, s/sub k/>0. In other words, for k/spl ges/3, k-SA does not have a subexponential-time algorithm. In this paper we show that s/sub k/ is an increasing sequence assuming ETH for k-SAT: Let s/sub /spl infin// be the limit of s/sub k/. We in fact show that s/sub k//spl les/(1-d/k) s/sub /spl infin// for some constant d>0.