k-SAT的复杂度

R. Impagliazzo, R. Paturi
{"title":"k-SAT的复杂度","authors":"R. Impagliazzo, R. Paturi","doi":"10.1109/CCC.1999.766282","DOIUrl":null,"url":null,"abstract":"The problem of k-SAT is to determine if the given k-CNF has a satisfying solution. It is a celebrated open question as to whether it requires exponential time to solve k-SAT for k/spl ges/3. Define s/sub k/ (for k/spl ges/3) to be the infimum of {/spl delta/: there exists an O(2/sup /spl delta/n/) algorithm for solving k-SAT}. Define ETH (Exponential-Time Hypothesis) for k-SAT as follows: for k/spl ges/3, s/sub k/>0. In other words, for k/spl ges/3, k-SA does not have a subexponential-time algorithm. In this paper we show that s/sub k/ is an increasing sequence assuming ETH for k-SAT: Let s/sub /spl infin// be the limit of s/sub k/. We in fact show that s/sub k//spl les/(1-d/k) s/sub /spl infin// for some constant d>0.","PeriodicalId":432015,"journal":{"name":"Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1277","resultStr":"{\"title\":\"Complexity of k-SAT\",\"authors\":\"R. Impagliazzo, R. Paturi\",\"doi\":\"10.1109/CCC.1999.766282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of k-SAT is to determine if the given k-CNF has a satisfying solution. It is a celebrated open question as to whether it requires exponential time to solve k-SAT for k/spl ges/3. Define s/sub k/ (for k/spl ges/3) to be the infimum of {/spl delta/: there exists an O(2/sup /spl delta/n/) algorithm for solving k-SAT}. Define ETH (Exponential-Time Hypothesis) for k-SAT as follows: for k/spl ges/3, s/sub k/>0. In other words, for k/spl ges/3, k-SA does not have a subexponential-time algorithm. In this paper we show that s/sub k/ is an increasing sequence assuming ETH for k-SAT: Let s/sub /spl infin// be the limit of s/sub k/. We in fact show that s/sub k//spl les/(1-d/k) s/sub /spl infin// for some constant d>0.\",\"PeriodicalId\":432015,\"journal\":{\"name\":\"Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1277\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCC.1999.766282\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCC.1999.766282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1277

摘要

k-SAT的问题是确定给定的k-CNF是否有一个令人满意的解。对于k/ splges /3是否需要指数时间来求解k- sat,这是一个著名的开放性问题。定义s/sub k/(对于k/spl ges/3)为{/spl delta/的最小值:存在求解k- sat}的O(2/sup /spl delta/n/)算法。定义k- sat的ETH(指数时间假设)如下:对于k/spl ges/3, s/sub k/>0。换句话说,对于k/ splges /3, k- sa没有次指数时间算法。本文证明了s/下标k/是一个递增序列,假设k- sat为ETH,设s/下标k/为s/下标k/的极限。事实上,我们证明了s/sub /k //spl等于/(1-d/k) s/sub /spl //对于某个常数d>0。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Complexity of k-SAT
The problem of k-SAT is to determine if the given k-CNF has a satisfying solution. It is a celebrated open question as to whether it requires exponential time to solve k-SAT for k/spl ges/3. Define s/sub k/ (for k/spl ges/3) to be the infimum of {/spl delta/: there exists an O(2/sup /spl delta/n/) algorithm for solving k-SAT}. Define ETH (Exponential-Time Hypothesis) for k-SAT as follows: for k/spl ges/3, s/sub k/>0. In other words, for k/spl ges/3, k-SA does not have a subexponential-time algorithm. In this paper we show that s/sub k/ is an increasing sequence assuming ETH for k-SAT: Let s/sub /spl infin// be the limit of s/sub k/. We in fact show that s/sub k//spl les/(1-d/k) s/sub /spl infin// for some constant d>0.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信