基于随机森林分类器的双馈感应发电机风力机故障预测与分类

S. Zhang, M. Basu, E. Robinson, B. Fitzgerald, B. Basu
{"title":"基于随机森林分类器的双馈感应发电机风力机故障预测与分类","authors":"S. Zhang, M. Basu, E. Robinson, B. Fitzgerald, B. Basu","doi":"10.1049/icp.2021.1353","DOIUrl":null,"url":null,"abstract":"A detailed holistic doubly fed induction generator (DFIG) based wind turbine model is developed by interfacing FAST with Simulink. The effects of power converter faults on the mechanical systems are investigated and the collected simulation dataset is then evaluated under fault-free, and different faulty, scenarios. Then, this paper considers Random Forest Classifier as an efficient faulty prognosis through examination of the dataset. This method allows power converter faults to be predicted, and classified, in advance of their occurrences.","PeriodicalId":223615,"journal":{"name":"The 9th Renewable Power Generation Conference (RPG Dublin Online 2021)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fault Prediction and Classification for a Doubly-Fed Induction Generator based Wind Turbine by using Random Forest Classifier\",\"authors\":\"S. Zhang, M. Basu, E. Robinson, B. Fitzgerald, B. Basu\",\"doi\":\"10.1049/icp.2021.1353\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A detailed holistic doubly fed induction generator (DFIG) based wind turbine model is developed by interfacing FAST with Simulink. The effects of power converter faults on the mechanical systems are investigated and the collected simulation dataset is then evaluated under fault-free, and different faulty, scenarios. Then, this paper considers Random Forest Classifier as an efficient faulty prognosis through examination of the dataset. This method allows power converter faults to be predicted, and classified, in advance of their occurrences.\",\"PeriodicalId\":223615,\"journal\":{\"name\":\"The 9th Renewable Power Generation Conference (RPG Dublin Online 2021)\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 9th Renewable Power Generation Conference (RPG Dublin Online 2021)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/icp.2021.1353\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 9th Renewable Power Generation Conference (RPG Dublin Online 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/icp.2021.1353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过FAST与Simulink的接口,建立了一个详细的基于双馈感应发电机(DFIG)的风力发电机组整体模型。研究了电源转换器故障对机械系统的影响,并对所收集的仿真数据集在无故障和不同故障情况下进行了评估。然后,通过对数据集的检查,本文认为随机森林分类器是一种有效的故障预测方法。该方法可以在电源变换器故障发生前对其进行预测和分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fault Prediction and Classification for a Doubly-Fed Induction Generator based Wind Turbine by using Random Forest Classifier
A detailed holistic doubly fed induction generator (DFIG) based wind turbine model is developed by interfacing FAST with Simulink. The effects of power converter faults on the mechanical systems are investigated and the collected simulation dataset is then evaluated under fault-free, and different faulty, scenarios. Then, this paper considers Random Forest Classifier as an efficient faulty prognosis through examination of the dataset. This method allows power converter faults to be predicted, and classified, in advance of their occurrences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信