基于机器学习的近似控制的功率/ qos自适应HEVC FME硬件

Wagner Penny, D. Palomino, M. Porto, B. Zatt
{"title":"基于机器学习的近似控制的功率/ qos自适应HEVC FME硬件","authors":"Wagner Penny, D. Palomino, M. Porto, B. Zatt","doi":"10.1109/VCIP49819.2020.9301797","DOIUrl":null,"url":null,"abstract":"This paper presents a machine learning-based adaptive approximate hardware design targeting the fractional motion estimation (FME) of HEVC encoder. Hardware designs targeting multiple levels of approximation are proposed, by changing FME filters coefficients and/or discarding taps. The level of approximation is defined by a decision tree, generated taking into account the behavior of several parameters of the encoding in order to predict homogeneous blocks, more suitable for more aggressive approximation without significant losses on quality of service (QoS). Instead of applying a specific level of approximation over the full video, different approximate FME accelerators are dynamically selected. Such a strategy is able to provide up to 50.54% of power reduction while keeping the QoS losses at 1.18% BD-BR.","PeriodicalId":431880,"journal":{"name":"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Power/QoS-Adaptive HEVC FME Hardware using Machine Learning-Based Approximation Control\",\"authors\":\"Wagner Penny, D. Palomino, M. Porto, B. Zatt\",\"doi\":\"10.1109/VCIP49819.2020.9301797\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a machine learning-based adaptive approximate hardware design targeting the fractional motion estimation (FME) of HEVC encoder. Hardware designs targeting multiple levels of approximation are proposed, by changing FME filters coefficients and/or discarding taps. The level of approximation is defined by a decision tree, generated taking into account the behavior of several parameters of the encoding in order to predict homogeneous blocks, more suitable for more aggressive approximation without significant losses on quality of service (QoS). Instead of applying a specific level of approximation over the full video, different approximate FME accelerators are dynamically selected. Such a strategy is able to provide up to 50.54% of power reduction while keeping the QoS losses at 1.18% BD-BR.\",\"PeriodicalId\":431880,\"journal\":{\"name\":\"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VCIP49819.2020.9301797\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP49819.2020.9301797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对HEVC编码器的分数运动估计问题,提出了一种基于机器学习的自适应近似硬件设计。通过改变FME滤波器系数和/或丢弃抽头,提出了针对多级近似的硬件设计。近似级别由决策树定义,该决策树的生成考虑了编码的几个参数的行为,以便预测同质块,更适合更积极的近似,而不会对服务质量(QoS)造成重大损失。不同的近似FME加速器是动态选择的,而不是在整个视频上应用特定级别的近似。这种策略能够提供高达50.54%的功耗降低,同时保持QoS损失在1.18% BD-BR。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Power/QoS-Adaptive HEVC FME Hardware using Machine Learning-Based Approximation Control
This paper presents a machine learning-based adaptive approximate hardware design targeting the fractional motion estimation (FME) of HEVC encoder. Hardware designs targeting multiple levels of approximation are proposed, by changing FME filters coefficients and/or discarding taps. The level of approximation is defined by a decision tree, generated taking into account the behavior of several parameters of the encoding in order to predict homogeneous blocks, more suitable for more aggressive approximation without significant losses on quality of service (QoS). Instead of applying a specific level of approximation over the full video, different approximate FME accelerators are dynamically selected. Such a strategy is able to provide up to 50.54% of power reduction while keeping the QoS losses at 1.18% BD-BR.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信