{"title":"谁应该审查这个拉取请求:审稿人的建议,以加快群体协作","authors":"Yue Yu, Huaimin Wang, Gang Yin, C. Ling","doi":"10.1109/APSEC.2014.57","DOIUrl":null,"url":null,"abstract":"Github facilitates the pull-request mechanism as an outstanding social coding paradigm by integrating with social media. The review process of pull-requests is a typical crowd sourcing job which needs to solicit opinions of the community. Recommending appropriate reviewers can reduce the time between the submission of a pull-request and the actual review of it. In this paper, we firstly extend the traditional Machine Learning (ML) based approach of bug triaging to reviewer recommendation. Furthermore, we analyze social relations between contributors and reviewers, and propose a novel approach to recommend highly relevant reviewers by mining comment networks (CN) of given projects. Finally, we demonstrate the effectiveness of these two approaches with quantitative evaluations. The results show that CN-based approach achieves a significant improvement over the ML-based approach, and on average it reaches a precision of 78% and 67% for top-1 and top-2 recommendation respectively, and a recall of 77% for top-10 recommendation.","PeriodicalId":380881,"journal":{"name":"2014 21st Asia-Pacific Software Engineering Conference","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"56","resultStr":"{\"title\":\"Who Should Review this Pull-Request: Reviewer Recommendation to Expedite Crowd Collaboration\",\"authors\":\"Yue Yu, Huaimin Wang, Gang Yin, C. Ling\",\"doi\":\"10.1109/APSEC.2014.57\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Github facilitates the pull-request mechanism as an outstanding social coding paradigm by integrating with social media. The review process of pull-requests is a typical crowd sourcing job which needs to solicit opinions of the community. Recommending appropriate reviewers can reduce the time between the submission of a pull-request and the actual review of it. In this paper, we firstly extend the traditional Machine Learning (ML) based approach of bug triaging to reviewer recommendation. Furthermore, we analyze social relations between contributors and reviewers, and propose a novel approach to recommend highly relevant reviewers by mining comment networks (CN) of given projects. Finally, we demonstrate the effectiveness of these two approaches with quantitative evaluations. The results show that CN-based approach achieves a significant improvement over the ML-based approach, and on average it reaches a precision of 78% and 67% for top-1 and top-2 recommendation respectively, and a recall of 77% for top-10 recommendation.\",\"PeriodicalId\":380881,\"journal\":{\"name\":\"2014 21st Asia-Pacific Software Engineering Conference\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"56\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 21st Asia-Pacific Software Engineering Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APSEC.2014.57\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 21st Asia-Pacific Software Engineering Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APSEC.2014.57","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Who Should Review this Pull-Request: Reviewer Recommendation to Expedite Crowd Collaboration
Github facilitates the pull-request mechanism as an outstanding social coding paradigm by integrating with social media. The review process of pull-requests is a typical crowd sourcing job which needs to solicit opinions of the community. Recommending appropriate reviewers can reduce the time between the submission of a pull-request and the actual review of it. In this paper, we firstly extend the traditional Machine Learning (ML) based approach of bug triaging to reviewer recommendation. Furthermore, we analyze social relations between contributors and reviewers, and propose a novel approach to recommend highly relevant reviewers by mining comment networks (CN) of given projects. Finally, we demonstrate the effectiveness of these two approaches with quantitative evaluations. The results show that CN-based approach achieves a significant improvement over the ML-based approach, and on average it reaches a precision of 78% and 67% for top-1 and top-2 recommendation respectively, and a recall of 77% for top-10 recommendation.