基于变压器的汉语情感分类

Zhengshuai Zhu, Yanquan Zhou, Shuhao Xu
{"title":"基于变压器的汉语情感分类","authors":"Zhengshuai Zhu, Yanquan Zhou, Shuhao Xu","doi":"10.1145/3372422.3372438","DOIUrl":null,"url":null,"abstract":"This paper deals with the task of Chinese sentiment classification. We propose the MITE (Multi-Inputs Transformer Encoder) model, draw on the transformer encoding thought, mining the emotional information of Chinese contents. MITE introduce self-attention to find the emotional dependence between words, which we think is important for analyzing text sentiment categories. Experiments prove that our method improve the correctness of sentiment classification, which proves the emotional tendency is influenced by the sentimental polarity of the words in the sentence.","PeriodicalId":118684,"journal":{"name":"Proceedings of the 2019 2nd International Conference on Computational Intelligence and Intelligent Systems","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Transformer based Chinese Sentiment Classification\",\"authors\":\"Zhengshuai Zhu, Yanquan Zhou, Shuhao Xu\",\"doi\":\"10.1145/3372422.3372438\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with the task of Chinese sentiment classification. We propose the MITE (Multi-Inputs Transformer Encoder) model, draw on the transformer encoding thought, mining the emotional information of Chinese contents. MITE introduce self-attention to find the emotional dependence between words, which we think is important for analyzing text sentiment categories. Experiments prove that our method improve the correctness of sentiment classification, which proves the emotional tendency is influenced by the sentimental polarity of the words in the sentence.\",\"PeriodicalId\":118684,\"journal\":{\"name\":\"Proceedings of the 2019 2nd International Conference on Computational Intelligence and Intelligent Systems\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2019 2nd International Conference on Computational Intelligence and Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3372422.3372438\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 2nd International Conference on Computational Intelligence and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3372422.3372438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文主要研究汉语情感分类问题。我们提出了multi - input Transformer Encoder (multi - input Transformer Encoder)模型,借鉴变压器编码思想,挖掘中文内容的情感信息。引入自注意来发现词与词之间的情感依赖,我们认为这对分析文本情感类别很重要。实验证明,该方法提高了情感分类的正确性,证明了句子中词语的情感极性对情感倾向的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transformer based Chinese Sentiment Classification
This paper deals with the task of Chinese sentiment classification. We propose the MITE (Multi-Inputs Transformer Encoder) model, draw on the transformer encoding thought, mining the emotional information of Chinese contents. MITE introduce self-attention to find the emotional dependence between words, which we think is important for analyzing text sentiment categories. Experiments prove that our method improve the correctness of sentiment classification, which proves the emotional tendency is influenced by the sentimental polarity of the words in the sentence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信