PFC电池充电器的自适应控制

Johan Sebastián Sánchez Choachi, Miguel Ángel Dávila Rojas, C. L. T. Rodríguez
{"title":"PFC电池充电器的自适应控制","authors":"Johan Sebastián Sánchez Choachi, Miguel Ángel Dávila Rojas, C. L. T. Rodríguez","doi":"10.1109/PEPQA.2017.7981661","DOIUrl":null,"url":null,"abstract":"This paper develops the design of a batteries charger. This charger works as power factor correction and delivers a DC voltage to the battery. To this, a bridgeless boost topology is used, this and the battery are modeled and then, an adaptive control strategy is developed. This have into account the battery changes to tune the controller and keep sinusoidal the input current and keep it in phase with the main. Furthermore, the output voltage is controlled to a constant value with a suitable ripple to charge the battery. The outcomes of the simulation of this development are presented, where the average total harmonic distortion and power factor were 4.78 % and 0.9877 respectively. Finally, the conclusions are presented.","PeriodicalId":256426,"journal":{"name":"2017 IEEE Workshop on Power Electronics and Power Quality Applications (PEPQA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive control of a PFC batteries charger\",\"authors\":\"Johan Sebastián Sánchez Choachi, Miguel Ángel Dávila Rojas, C. L. T. Rodríguez\",\"doi\":\"10.1109/PEPQA.2017.7981661\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper develops the design of a batteries charger. This charger works as power factor correction and delivers a DC voltage to the battery. To this, a bridgeless boost topology is used, this and the battery are modeled and then, an adaptive control strategy is developed. This have into account the battery changes to tune the controller and keep sinusoidal the input current and keep it in phase with the main. Furthermore, the output voltage is controlled to a constant value with a suitable ripple to charge the battery. The outcomes of the simulation of this development are presented, where the average total harmonic distortion and power factor were 4.78 % and 0.9877 respectively. Finally, the conclusions are presented.\",\"PeriodicalId\":256426,\"journal\":{\"name\":\"2017 IEEE Workshop on Power Electronics and Power Quality Applications (PEPQA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Workshop on Power Electronics and Power Quality Applications (PEPQA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PEPQA.2017.7981661\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Workshop on Power Electronics and Power Quality Applications (PEPQA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PEPQA.2017.7981661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一种电池充电器的设计。此充电器作为功率因数校正并向电池提供直流电压。为此,采用无桥升压拓扑,对其和电池进行了建模,并提出了自适应控制策略。这已经考虑到电池的变化,以调整控制器和保持正弦输入电流,并保持其与主相。此外,输出电压被控制为具有合适纹波的恒定值,以给电池充电。仿真结果表明,该系统的平均总谐波失真和功率因数分别为4.78%和0.9877。最后,给出了结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive control of a PFC batteries charger
This paper develops the design of a batteries charger. This charger works as power factor correction and delivers a DC voltage to the battery. To this, a bridgeless boost topology is used, this and the battery are modeled and then, an adaptive control strategy is developed. This have into account the battery changes to tune the controller and keep sinusoidal the input current and keep it in phase with the main. Furthermore, the output voltage is controlled to a constant value with a suitable ripple to charge the battery. The outcomes of the simulation of this development are presented, where the average total harmonic distortion and power factor were 4.78 % and 0.9877 respectively. Finally, the conclusions are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信