基于质心神经网络的音频数据分类

Dong-Chul Park
{"title":"基于质心神经网络的音频数据分类","authors":"Dong-Chul Park","doi":"10.1109/ICISA.2010.5480533","DOIUrl":null,"url":null,"abstract":"The automatic classification of audio data is an effective way to organize a large-scale audio data files. In this paper, an automatic content-based audio classification model using Centroid Neural Networks (CNN) with a Divergence Measure is proposed. The Divergence-based Centroid Neural Network (DCNN) algorithm, which employs the divergence measure as its distance measure, is used for clustering of Gaussian Probability Distribution Function (GPDF) data. In comparison with other conventional algorithms, the D-CNN designed for probability data has the robustness advantages of utilizing a audio data representation method in which each audio data is represented by a Gaussian distribution feature vector. Experiments and results show that the proposed classification model very compatible classification accuracy with classical models employing the conventional k-means and CNN algorithms.","PeriodicalId":313762,"journal":{"name":"2010 International Conference on Information Science and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification of Audio Data Using a Centroid Neural Network\",\"authors\":\"Dong-Chul Park\",\"doi\":\"10.1109/ICISA.2010.5480533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The automatic classification of audio data is an effective way to organize a large-scale audio data files. In this paper, an automatic content-based audio classification model using Centroid Neural Networks (CNN) with a Divergence Measure is proposed. The Divergence-based Centroid Neural Network (DCNN) algorithm, which employs the divergence measure as its distance measure, is used for clustering of Gaussian Probability Distribution Function (GPDF) data. In comparison with other conventional algorithms, the D-CNN designed for probability data has the robustness advantages of utilizing a audio data representation method in which each audio data is represented by a Gaussian distribution feature vector. Experiments and results show that the proposed classification model very compatible classification accuracy with classical models employing the conventional k-means and CNN algorithms.\",\"PeriodicalId\":313762,\"journal\":{\"name\":\"2010 International Conference on Information Science and Applications\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Information Science and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICISA.2010.5480533\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Information Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICISA.2010.5480533","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

音频数据的自动分类是对大规模音频数据文件进行组织的有效方法。本文提出了一种基于内容的音频自动分类模型,该模型采用发散度量方法。采用散度测度作为距离测度的基于散度的质心神经网络(DCNN)算法,对高斯概率分布函数(GPDF)数据进行聚类。与其他传统算法相比,针对概率数据设计的D-CNN采用了一种音频数据表示方法,其中每个音频数据由高斯分布特征向量表示,具有鲁棒性优势。实验和结果表明,所提出的分类模型与传统k-means和CNN算法的经典模型的分类精度非常一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification of Audio Data Using a Centroid Neural Network
The automatic classification of audio data is an effective way to organize a large-scale audio data files. In this paper, an automatic content-based audio classification model using Centroid Neural Networks (CNN) with a Divergence Measure is proposed. The Divergence-based Centroid Neural Network (DCNN) algorithm, which employs the divergence measure as its distance measure, is used for clustering of Gaussian Probability Distribution Function (GPDF) data. In comparison with other conventional algorithms, the D-CNN designed for probability data has the robustness advantages of utilizing a audio data representation method in which each audio data is represented by a Gaussian distribution feature vector. Experiments and results show that the proposed classification model very compatible classification accuracy with classical models employing the conventional k-means and CNN algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信