提醒健忘的有机神经形态装置网络

Daniel Felder, Katerina Muche, J. Linkhorst, Matthias Wessling
{"title":"提醒健忘的有机神经形态装置网络","authors":"Daniel Felder, Katerina Muche, J. Linkhorst, Matthias Wessling","doi":"10.1088/2634-4386/ac9c8a","DOIUrl":null,"url":null,"abstract":"Organic neuromorphic device networks can accelerate neural network algorithms and directly integrate with microfluidic systems or living tissues. Proposed devices based on the bio-compatible conductive polymer PEDOT:PSS have shown high switching speeds and low energy demand. However, as electrochemical systems, they are prone to self-discharge through parasitic electrochemical reactions. Therefore, the network’s synapses forget their trained conductance states over time. This work integrates single-device high-resolution charge transport models to simulate entire neuromorphic device networks and analyze the impact of self-discharge on network performance. Simulation of a single-layer nine-pixel image classification network commonly used in experimental demonstrations reveals no significant impact of self-discharge on training efficiency. And, even though the network’s weights drift significantly during self-discharge, its predictions remain 100% accurate for over ten hours. On the other hand, a multi-layer network for the approximation of the circle function is shown to degrade significantly over twenty minutes with a final mean-squared-error loss of 0.4. We propose to counter the effect by periodically reminding the network based on a map between a synapse’s current state, the time since the last reminder, and the weight drift. We show that this method with a map obtained through validated simulations can reduce the effective loss to below 0.1 even with worst-case assumptions. Finally, while the training of this network is affected by self-discharge, a good classification is still obtained. Electrochemical organic neuromorphic devices have not been integrated into larger device networks. This work predicts their behavior under nonideal conditions, mitigates the worst-case effects of parasitic self-discharge, and opens the path toward implementing fast and efficient neural networks on organic neuromorphic hardware.","PeriodicalId":198030,"journal":{"name":"Neuromorphic Computing and Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Reminding forgetful organic neuromorphic device networks\",\"authors\":\"Daniel Felder, Katerina Muche, J. Linkhorst, Matthias Wessling\",\"doi\":\"10.1088/2634-4386/ac9c8a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Organic neuromorphic device networks can accelerate neural network algorithms and directly integrate with microfluidic systems or living tissues. Proposed devices based on the bio-compatible conductive polymer PEDOT:PSS have shown high switching speeds and low energy demand. However, as electrochemical systems, they are prone to self-discharge through parasitic electrochemical reactions. Therefore, the network’s synapses forget their trained conductance states over time. This work integrates single-device high-resolution charge transport models to simulate entire neuromorphic device networks and analyze the impact of self-discharge on network performance. Simulation of a single-layer nine-pixel image classification network commonly used in experimental demonstrations reveals no significant impact of self-discharge on training efficiency. And, even though the network’s weights drift significantly during self-discharge, its predictions remain 100% accurate for over ten hours. On the other hand, a multi-layer network for the approximation of the circle function is shown to degrade significantly over twenty minutes with a final mean-squared-error loss of 0.4. We propose to counter the effect by periodically reminding the network based on a map between a synapse’s current state, the time since the last reminder, and the weight drift. We show that this method with a map obtained through validated simulations can reduce the effective loss to below 0.1 even with worst-case assumptions. Finally, while the training of this network is affected by self-discharge, a good classification is still obtained. Electrochemical organic neuromorphic devices have not been integrated into larger device networks. This work predicts their behavior under nonideal conditions, mitigates the worst-case effects of parasitic self-discharge, and opens the path toward implementing fast and efficient neural networks on organic neuromorphic hardware.\",\"PeriodicalId\":198030,\"journal\":{\"name\":\"Neuromorphic Computing and Engineering\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuromorphic Computing and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2634-4386/ac9c8a\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuromorphic Computing and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2634-4386/ac9c8a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

有机神经形态装置网络可以加速神经网络算法,并直接与微流体系统或活体组织集成。提出的基于生物相容性导电聚合物PEDOT:PSS的器件显示出高开关速度和低能量需求。然而,作为电化学体系,它们容易通过寄生电化学反应产生自放电。因此,随着时间的推移,神经网络的突触会忘记它们训练过的电导状态。这项工作集成了单设备高分辨率电荷传输模型来模拟整个神经形态设备网络,并分析了自放电对网络性能的影响。对实验演示中常用的单层九像素图像分类网络进行仿真,结果表明自放电对训练效率没有显著影响。而且,即使网络的权重在自放电过程中漂移明显,它的预测在10个小时内仍然是100%准确的。另一方面,用于近似圆函数的多层网络在20分钟内显着退化,最终均方误差损失为0.4。我们建议通过基于突触当前状态、上次提醒后的时间和权重漂移之间的映射,定期提醒网络来抵消这种影响。我们表明,即使在最坏情况下,该方法与经过验证的模拟获得的地图也可以将有效损失降低到0.1以下。最后,在网络训练受到自放电影响的情况下,仍然得到了很好的分类结果。电化学有机神经形态器件尚未集成到更大的器件网络中。这项工作预测了它们在非理想条件下的行为,减轻了寄生自放电的最坏情况影响,并为在有机神经形态硬件上实现快速高效的神经网络开辟了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reminding forgetful organic neuromorphic device networks
Organic neuromorphic device networks can accelerate neural network algorithms and directly integrate with microfluidic systems or living tissues. Proposed devices based on the bio-compatible conductive polymer PEDOT:PSS have shown high switching speeds and low energy demand. However, as electrochemical systems, they are prone to self-discharge through parasitic electrochemical reactions. Therefore, the network’s synapses forget their trained conductance states over time. This work integrates single-device high-resolution charge transport models to simulate entire neuromorphic device networks and analyze the impact of self-discharge on network performance. Simulation of a single-layer nine-pixel image classification network commonly used in experimental demonstrations reveals no significant impact of self-discharge on training efficiency. And, even though the network’s weights drift significantly during self-discharge, its predictions remain 100% accurate for over ten hours. On the other hand, a multi-layer network for the approximation of the circle function is shown to degrade significantly over twenty minutes with a final mean-squared-error loss of 0.4. We propose to counter the effect by periodically reminding the network based on a map between a synapse’s current state, the time since the last reminder, and the weight drift. We show that this method with a map obtained through validated simulations can reduce the effective loss to below 0.1 even with worst-case assumptions. Finally, while the training of this network is affected by self-discharge, a good classification is still obtained. Electrochemical organic neuromorphic devices have not been integrated into larger device networks. This work predicts their behavior under nonideal conditions, mitigates the worst-case effects of parasitic self-discharge, and opens the path toward implementing fast and efficient neural networks on organic neuromorphic hardware.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信