G. Meng, Yonghong Cheng, C. Dong, Lei Chen, Bowen Zhu, C. Men
{"title":"电极几何形状对纳米尺度真空击穿行为的影响","authors":"G. Meng, Yonghong Cheng, C. Dong, Lei Chen, Bowen Zhu, C. Men","doi":"10.1109/ICD.2016.7547823","DOIUrl":null,"url":null,"abstract":"The micro/nano devices have been widely used for the past decades. However, as one of the major factors to restrict the performance of the devices, the insulation failure mechanism at nanoscale is still unclear. Basically, the insulation performance in vacuum is related to the electrode geometry, electrode materials, gap size and applied voltage, etc. To better understand the mechanism of vacuum breakdown at nanoscale, the present work focuses on the effect of electrode geometry on nanoscale breakdown in vacuum. The effect of the electrode geometry would be investigated experimentally and the mechanism would also be discussed in the paper.","PeriodicalId":306397,"journal":{"name":"2016 IEEE International Conference on Dielectrics (ICD)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Effect of electrode geometry on the vacuum breakdown behaviors at nanoscale\",\"authors\":\"G. Meng, Yonghong Cheng, C. Dong, Lei Chen, Bowen Zhu, C. Men\",\"doi\":\"10.1109/ICD.2016.7547823\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The micro/nano devices have been widely used for the past decades. However, as one of the major factors to restrict the performance of the devices, the insulation failure mechanism at nanoscale is still unclear. Basically, the insulation performance in vacuum is related to the electrode geometry, electrode materials, gap size and applied voltage, etc. To better understand the mechanism of vacuum breakdown at nanoscale, the present work focuses on the effect of electrode geometry on nanoscale breakdown in vacuum. The effect of the electrode geometry would be investigated experimentally and the mechanism would also be discussed in the paper.\",\"PeriodicalId\":306397,\"journal\":{\"name\":\"2016 IEEE International Conference on Dielectrics (ICD)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Dielectrics (ICD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICD.2016.7547823\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Dielectrics (ICD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICD.2016.7547823","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effect of electrode geometry on the vacuum breakdown behaviors at nanoscale
The micro/nano devices have been widely used for the past decades. However, as one of the major factors to restrict the performance of the devices, the insulation failure mechanism at nanoscale is still unclear. Basically, the insulation performance in vacuum is related to the electrode geometry, electrode materials, gap size and applied voltage, etc. To better understand the mechanism of vacuum breakdown at nanoscale, the present work focuses on the effect of electrode geometry on nanoscale breakdown in vacuum. The effect of the electrode geometry would be investigated experimentally and the mechanism would also be discussed in the paper.