基于递归神经网络的复杂动态网络鲁棒固定控制

E. Sánchez, D. Rodriguez-Castellanos
{"title":"基于递归神经网络的复杂动态网络鲁棒固定控制","authors":"E. Sánchez, D. Rodriguez-Castellanos","doi":"10.1109/CICA.2014.7013236","DOIUrl":null,"url":null,"abstract":"In this paper, using recurrent high order neural networks as an identification strategy for unknown pinned nodes dynamics, a new scheme for pinning control of complex networks with changing unknown coupling strengths is proposed and a robust regulation behavior on such scenario is demonstrated.","PeriodicalId":340740,"journal":{"name":"2014 IEEE Symposium on Computational Intelligence in Control and Automation (CICA)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Robust pinning control of complex dynamical networks using recurrent neural networks\",\"authors\":\"E. Sánchez, D. Rodriguez-Castellanos\",\"doi\":\"10.1109/CICA.2014.7013236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, using recurrent high order neural networks as an identification strategy for unknown pinned nodes dynamics, a new scheme for pinning control of complex networks with changing unknown coupling strengths is proposed and a robust regulation behavior on such scenario is demonstrated.\",\"PeriodicalId\":340740,\"journal\":{\"name\":\"2014 IEEE Symposium on Computational Intelligence in Control and Automation (CICA)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Symposium on Computational Intelligence in Control and Automation (CICA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CICA.2014.7013236\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Computational Intelligence in Control and Automation (CICA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICA.2014.7013236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文利用递归高阶神经网络作为未知钉住节点动态的辨识策略,提出了一种具有变化未知耦合强度的复杂网络钉住控制的新方案,并证明了该方案下的鲁棒调节行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust pinning control of complex dynamical networks using recurrent neural networks
In this paper, using recurrent high order neural networks as an identification strategy for unknown pinned nodes dynamics, a new scheme for pinning control of complex networks with changing unknown coupling strengths is proposed and a robust regulation behavior on such scenario is demonstrated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信