单位球嵌入非线性降维及其在图像聚类中的应用

Behrouz Haji Soleimani, S. Matwin
{"title":"单位球嵌入非线性降维及其在图像聚类中的应用","authors":"Behrouz Haji Soleimani, S. Matwin","doi":"10.1109/ICMLA.2016.0177","DOIUrl":null,"url":null,"abstract":"The paper presents an unsupervised nonlinear dimensionality reduction algorithm called Unit Ball Embedding (UBE). Many high-dimensional data, such as object or face images, lie on a union of low-dimensional subspaces which are often called manifolds. The proposed method is able to learn the structure of these manifolds by exploiting the local neighborhood arrangement around each point. It tries to preserve the local structure by minimizing a cost function that measures the discrepancy between similarities of points in the high-dimensional data and similarities of points in the low-dimensional embedding. The cost function is proposed in a way that it provides a hyper-spherical representation of points in the low-dimensional embedding. Visualizations of our method on different datasets show that it creates large gaps between the manifolds and maximizes the separability of them. As a result, it notably improves the quality of unsupervised machine learning tasks (e.g. clustering). UBE is successfully applied on image datasets such as faces, handwritten digits, and objects and the results of clustering on the low-dimensional embedding show significant improvement over existing dimensionality reduction methods.","PeriodicalId":356182,"journal":{"name":"2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Nonlinear Dimensionality Reduction by Unit Ball Embedding (UBE) and Its Application to Image Clustering\",\"authors\":\"Behrouz Haji Soleimani, S. Matwin\",\"doi\":\"10.1109/ICMLA.2016.0177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents an unsupervised nonlinear dimensionality reduction algorithm called Unit Ball Embedding (UBE). Many high-dimensional data, such as object or face images, lie on a union of low-dimensional subspaces which are often called manifolds. The proposed method is able to learn the structure of these manifolds by exploiting the local neighborhood arrangement around each point. It tries to preserve the local structure by minimizing a cost function that measures the discrepancy between similarities of points in the high-dimensional data and similarities of points in the low-dimensional embedding. The cost function is proposed in a way that it provides a hyper-spherical representation of points in the low-dimensional embedding. Visualizations of our method on different datasets show that it creates large gaps between the manifolds and maximizes the separability of them. As a result, it notably improves the quality of unsupervised machine learning tasks (e.g. clustering). UBE is successfully applied on image datasets such as faces, handwritten digits, and objects and the results of clustering on the low-dimensional embedding show significant improvement over existing dimensionality reduction methods.\",\"PeriodicalId\":356182,\"journal\":{\"name\":\"2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2016.0177\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2016.0177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

提出了一种无监督非线性降维算法——单位球嵌入(UBE)。许多高维数据,如物体或人脸图像,位于低维子空间的并集上,这些子空间通常被称为流形。该方法通过利用每个点周围的局部邻域排列来学习流形的结构。它试图通过最小化代价函数来保持局部结构,该代价函数测量高维数据中点的相似性与低维嵌入中点的相似性之间的差异。成本函数的提出方式是在低维嵌入中提供点的超球面表示。我们的方法在不同数据集上的可视化显示,它在流形之间创建了很大的间隙,并最大化了它们的可分离性。因此,它显著提高了无监督机器学习任务(例如聚类)的质量。UBE成功应用于人脸、手写数字、物体等图像数据集,在低维嵌入上聚类的结果比现有降维方法有显著改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonlinear Dimensionality Reduction by Unit Ball Embedding (UBE) and Its Application to Image Clustering
The paper presents an unsupervised nonlinear dimensionality reduction algorithm called Unit Ball Embedding (UBE). Many high-dimensional data, such as object or face images, lie on a union of low-dimensional subspaces which are often called manifolds. The proposed method is able to learn the structure of these manifolds by exploiting the local neighborhood arrangement around each point. It tries to preserve the local structure by minimizing a cost function that measures the discrepancy between similarities of points in the high-dimensional data and similarities of points in the low-dimensional embedding. The cost function is proposed in a way that it provides a hyper-spherical representation of points in the low-dimensional embedding. Visualizations of our method on different datasets show that it creates large gaps between the manifolds and maximizes the separability of them. As a result, it notably improves the quality of unsupervised machine learning tasks (e.g. clustering). UBE is successfully applied on image datasets such as faces, handwritten digits, and objects and the results of clustering on the low-dimensional embedding show significant improvement over existing dimensionality reduction methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信