基于地球移动距离的多特征轨迹聚类

F. Boem, F. A. Pellegrino, G. Fenu, T. Parisini
{"title":"基于地球移动距离的多特征轨迹聚类","authors":"F. Boem, F. A. Pellegrino, G. Fenu, T. Parisini","doi":"10.1109/CASE.2011.6042423","DOIUrl":null,"url":null,"abstract":"We present new results in trajectory clustering, obtained by extending a recent methodology based on Earth Mover's Distance (EMD). The EMD can be adapted as a tool for trajectory clustering, taking advantage of an effective method for identifying the clusters' representatives by means of the p-median location problem. This methodology can be used either in an unsupervised fashion, or on-line, classifying new trajectories or part of them; it is able to manage different length and noisy trajectories, occlusions and takes velocity profiles and stops into account. We extend our previous work by taking into account other features besides the spatial locations, in particular we consider the direction of movement in correspondence of each trajectory point. We discuss the simulation results and we compare our approach with another trajectory clustering method.","PeriodicalId":236208,"journal":{"name":"2011 IEEE International Conference on Automation Science and Engineering","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Multi-feature trajectory clustering using Earth Mover's Distance\",\"authors\":\"F. Boem, F. A. Pellegrino, G. Fenu, T. Parisini\",\"doi\":\"10.1109/CASE.2011.6042423\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present new results in trajectory clustering, obtained by extending a recent methodology based on Earth Mover's Distance (EMD). The EMD can be adapted as a tool for trajectory clustering, taking advantage of an effective method for identifying the clusters' representatives by means of the p-median location problem. This methodology can be used either in an unsupervised fashion, or on-line, classifying new trajectories or part of them; it is able to manage different length and noisy trajectories, occlusions and takes velocity profiles and stops into account. We extend our previous work by taking into account other features besides the spatial locations, in particular we consider the direction of movement in correspondence of each trajectory point. We discuss the simulation results and we compare our approach with another trajectory clustering method.\",\"PeriodicalId\":236208,\"journal\":{\"name\":\"2011 IEEE International Conference on Automation Science and Engineering\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Conference on Automation Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CASE.2011.6042423\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Automation Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CASE.2011.6042423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

我们提出了轨迹聚类的新结果,通过扩展基于地球移动距离(EMD)的最新方法获得。EMD可以作为轨迹聚类的工具,利用p中位数定位问题识别聚类代表的有效方法。这种方法既可以以无监督的方式使用,也可以在线使用,对新的轨迹或其中的一部分进行分类;它能够管理不同的长度和噪声轨迹,闭塞,并考虑到速度剖面和停止。我们扩展了之前的工作,考虑了空间位置之外的其他特征,特别是考虑了每个轨迹点对应的运动方向。讨论了仿真结果,并与另一种轨迹聚类方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-feature trajectory clustering using Earth Mover's Distance
We present new results in trajectory clustering, obtained by extending a recent methodology based on Earth Mover's Distance (EMD). The EMD can be adapted as a tool for trajectory clustering, taking advantage of an effective method for identifying the clusters' representatives by means of the p-median location problem. This methodology can be used either in an unsupervised fashion, or on-line, classifying new trajectories or part of them; it is able to manage different length and noisy trajectories, occlusions and takes velocity profiles and stops into account. We extend our previous work by taking into account other features besides the spatial locations, in particular we consider the direction of movement in correspondence of each trajectory point. We discuss the simulation results and we compare our approach with another trajectory clustering method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信