Volterra-Fredholm分数阶积分微分方程的第二类Chebyshev配置技术

T. Oyedepo, A. A. Ayoade, I. Otaide, A. Ayinde
{"title":"Volterra-Fredholm分数阶积分微分方程的第二类Chebyshev配置技术","authors":"T. Oyedepo, A. A. Ayoade, I. Otaide, A. Ayinde","doi":"10.21580/jnsmr.2022.8.2.13021","DOIUrl":null,"url":null,"abstract":"In this work, we present the numerical solution of fractional order Volterra–Fredholm integro-differential equations using the second kind of Chebyshev collocation technique. First, we transformed the problem into a system of linear algebraic equations, which are then solved using matrix inversion to obtain the unknown constants. Furthermore, numerical examples are used to outline the method’s accuracy and efficiency using tables and figures. The results show that the method performed better in terms of improving accuracy and requiring less rigorous work.©2022 JNSMR UIN Walisongo. All rights reserved.","PeriodicalId":191192,"journal":{"name":"Journal of Natural Sciences and Mathematics Research","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Second kind Chebyshev collocation technique for Volterra-Fredholm fractional order integro-differential equations\",\"authors\":\"T. Oyedepo, A. A. Ayoade, I. Otaide, A. Ayinde\",\"doi\":\"10.21580/jnsmr.2022.8.2.13021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we present the numerical solution of fractional order Volterra–Fredholm integro-differential equations using the second kind of Chebyshev collocation technique. First, we transformed the problem into a system of linear algebraic equations, which are then solved using matrix inversion to obtain the unknown constants. Furthermore, numerical examples are used to outline the method’s accuracy and efficiency using tables and figures. The results show that the method performed better in terms of improving accuracy and requiring less rigorous work.©2022 JNSMR UIN Walisongo. All rights reserved.\",\"PeriodicalId\":191192,\"journal\":{\"name\":\"Journal of Natural Sciences and Mathematics Research\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Natural Sciences and Mathematics Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21580/jnsmr.2022.8.2.13021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Natural Sciences and Mathematics Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21580/jnsmr.2022.8.2.13021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文利用第二类Chebyshev配置技术,给出了分数阶Volterra-Fredholm积分微分方程的数值解。首先,我们将问题转化为线性代数方程组,然后用矩阵反演的方法求解得到未知常数。通过数值算例,用图表说明了该方法的精度和效率。结果表明,该方法在提高精度和降低工作要求方面取得了较好的效果。©2022 JNSMR UIN Walisongo。版权所有。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Second kind Chebyshev collocation technique for Volterra-Fredholm fractional order integro-differential equations
In this work, we present the numerical solution of fractional order Volterra–Fredholm integro-differential equations using the second kind of Chebyshev collocation technique. First, we transformed the problem into a system of linear algebraic equations, which are then solved using matrix inversion to obtain the unknown constants. Furthermore, numerical examples are used to outline the method’s accuracy and efficiency using tables and figures. The results show that the method performed better in terms of improving accuracy and requiring less rigorous work.©2022 JNSMR UIN Walisongo. All rights reserved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信