{"title":"自由流湍流条件下涡轮叶片压力侧层流强化换热的LES研究","authors":"Y. Kanani, S. Acharya, F. Ames","doi":"10.1115/GT2018-77135","DOIUrl":null,"url":null,"abstract":"Vane pressure side heat transfer is studied numerically using Large Eddy Simulation (LES) on an aft loaded vane with a large leading edge over a range of turbulence conditions. Numerical simulations are performed in a linear cascade at exit chord Reynolds number of Re = 5.1 × 105 at low (Tu≈0.7%), moderate (Tu≈7.9%) and high (Tu≈12.4%) freestream turbulence with varying length scales as prescribed by the experimental measurements of Varty and Ames (2016). Heat transfer predictions (i.e. Stanton number based on exit condition) on the vane pressure side are in a very good agreement with the experimental measurements and the heat transfer augmentation due to the freestream turbulence is well captured. At Tu≈12.4%, freestream turbulence enhances the Stanton number on the pressure surface without boundary layer transition to turbulence by a maximum of about 50% relative to the low freestream turbulence case (Tu≈0.7%). Higher freestream turbulence generates elongated structures and high-velocity streaks wrapped around the leading edge that contain significant energy. Amplification of the velocity streaks is observed further downstream with max r.m.s of 0.3 near the trailing edge but no transition to turbulence or formation of turbulence spots is observed on the pressure side. The heat transfer augmentation at the higher freestream turbulence is primarily due to the initial amplification of the low-frequency velocity perturbations inside the boundary layer that persist along the entire chord of the airfoil. Stanton numbers appear to scale with the streamwise velocity fluctuations inside the boundary layer. Görtler vortices are not observed for this airfoil geometry.","PeriodicalId":239866,"journal":{"name":"Volume 5C: Heat Transfer","volume":"8 10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"LES Study of the Laminar Heat Transfer Augmentation on the Pressure Side of a Turbine Vane Under Freestream Turbulence\",\"authors\":\"Y. Kanani, S. Acharya, F. Ames\",\"doi\":\"10.1115/GT2018-77135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vane pressure side heat transfer is studied numerically using Large Eddy Simulation (LES) on an aft loaded vane with a large leading edge over a range of turbulence conditions. Numerical simulations are performed in a linear cascade at exit chord Reynolds number of Re = 5.1 × 105 at low (Tu≈0.7%), moderate (Tu≈7.9%) and high (Tu≈12.4%) freestream turbulence with varying length scales as prescribed by the experimental measurements of Varty and Ames (2016). Heat transfer predictions (i.e. Stanton number based on exit condition) on the vane pressure side are in a very good agreement with the experimental measurements and the heat transfer augmentation due to the freestream turbulence is well captured. At Tu≈12.4%, freestream turbulence enhances the Stanton number on the pressure surface without boundary layer transition to turbulence by a maximum of about 50% relative to the low freestream turbulence case (Tu≈0.7%). Higher freestream turbulence generates elongated structures and high-velocity streaks wrapped around the leading edge that contain significant energy. Amplification of the velocity streaks is observed further downstream with max r.m.s of 0.3 near the trailing edge but no transition to turbulence or formation of turbulence spots is observed on the pressure side. The heat transfer augmentation at the higher freestream turbulence is primarily due to the initial amplification of the low-frequency velocity perturbations inside the boundary layer that persist along the entire chord of the airfoil. Stanton numbers appear to scale with the streamwise velocity fluctuations inside the boundary layer. Görtler vortices are not observed for this airfoil geometry.\",\"PeriodicalId\":239866,\"journal\":{\"name\":\"Volume 5C: Heat Transfer\",\"volume\":\"8 10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 5C: Heat Transfer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/GT2018-77135\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 5C: Heat Transfer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/GT2018-77135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
LES Study of the Laminar Heat Transfer Augmentation on the Pressure Side of a Turbine Vane Under Freestream Turbulence
Vane pressure side heat transfer is studied numerically using Large Eddy Simulation (LES) on an aft loaded vane with a large leading edge over a range of turbulence conditions. Numerical simulations are performed in a linear cascade at exit chord Reynolds number of Re = 5.1 × 105 at low (Tu≈0.7%), moderate (Tu≈7.9%) and high (Tu≈12.4%) freestream turbulence with varying length scales as prescribed by the experimental measurements of Varty and Ames (2016). Heat transfer predictions (i.e. Stanton number based on exit condition) on the vane pressure side are in a very good agreement with the experimental measurements and the heat transfer augmentation due to the freestream turbulence is well captured. At Tu≈12.4%, freestream turbulence enhances the Stanton number on the pressure surface without boundary layer transition to turbulence by a maximum of about 50% relative to the low freestream turbulence case (Tu≈0.7%). Higher freestream turbulence generates elongated structures and high-velocity streaks wrapped around the leading edge that contain significant energy. Amplification of the velocity streaks is observed further downstream with max r.m.s of 0.3 near the trailing edge but no transition to turbulence or formation of turbulence spots is observed on the pressure side. The heat transfer augmentation at the higher freestream turbulence is primarily due to the initial amplification of the low-frequency velocity perturbations inside the boundary layer that persist along the entire chord of the airfoil. Stanton numbers appear to scale with the streamwise velocity fluctuations inside the boundary layer. Görtler vortices are not observed for this airfoil geometry.