自由流湍流条件下涡轮叶片压力侧层流强化换热的LES研究

Y. Kanani, S. Acharya, F. Ames
{"title":"自由流湍流条件下涡轮叶片压力侧层流强化换热的LES研究","authors":"Y. Kanani, S. Acharya, F. Ames","doi":"10.1115/GT2018-77135","DOIUrl":null,"url":null,"abstract":"Vane pressure side heat transfer is studied numerically using Large Eddy Simulation (LES) on an aft loaded vane with a large leading edge over a range of turbulence conditions. Numerical simulations are performed in a linear cascade at exit chord Reynolds number of Re = 5.1 × 105 at low (Tu≈0.7%), moderate (Tu≈7.9%) and high (Tu≈12.4%) freestream turbulence with varying length scales as prescribed by the experimental measurements of Varty and Ames (2016). Heat transfer predictions (i.e. Stanton number based on exit condition) on the vane pressure side are in a very good agreement with the experimental measurements and the heat transfer augmentation due to the freestream turbulence is well captured. At Tu≈12.4%, freestream turbulence enhances the Stanton number on the pressure surface without boundary layer transition to turbulence by a maximum of about 50% relative to the low freestream turbulence case (Tu≈0.7%). Higher freestream turbulence generates elongated structures and high-velocity streaks wrapped around the leading edge that contain significant energy. Amplification of the velocity streaks is observed further downstream with max r.m.s of 0.3 near the trailing edge but no transition to turbulence or formation of turbulence spots is observed on the pressure side. The heat transfer augmentation at the higher freestream turbulence is primarily due to the initial amplification of the low-frequency velocity perturbations inside the boundary layer that persist along the entire chord of the airfoil. Stanton numbers appear to scale with the streamwise velocity fluctuations inside the boundary layer. Görtler vortices are not observed for this airfoil geometry.","PeriodicalId":239866,"journal":{"name":"Volume 5C: Heat Transfer","volume":"8 10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"LES Study of the Laminar Heat Transfer Augmentation on the Pressure Side of a Turbine Vane Under Freestream Turbulence\",\"authors\":\"Y. Kanani, S. Acharya, F. Ames\",\"doi\":\"10.1115/GT2018-77135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vane pressure side heat transfer is studied numerically using Large Eddy Simulation (LES) on an aft loaded vane with a large leading edge over a range of turbulence conditions. Numerical simulations are performed in a linear cascade at exit chord Reynolds number of Re = 5.1 × 105 at low (Tu≈0.7%), moderate (Tu≈7.9%) and high (Tu≈12.4%) freestream turbulence with varying length scales as prescribed by the experimental measurements of Varty and Ames (2016). Heat transfer predictions (i.e. Stanton number based on exit condition) on the vane pressure side are in a very good agreement with the experimental measurements and the heat transfer augmentation due to the freestream turbulence is well captured. At Tu≈12.4%, freestream turbulence enhances the Stanton number on the pressure surface without boundary layer transition to turbulence by a maximum of about 50% relative to the low freestream turbulence case (Tu≈0.7%). Higher freestream turbulence generates elongated structures and high-velocity streaks wrapped around the leading edge that contain significant energy. Amplification of the velocity streaks is observed further downstream with max r.m.s of 0.3 near the trailing edge but no transition to turbulence or formation of turbulence spots is observed on the pressure side. The heat transfer augmentation at the higher freestream turbulence is primarily due to the initial amplification of the low-frequency velocity perturbations inside the boundary layer that persist along the entire chord of the airfoil. Stanton numbers appear to scale with the streamwise velocity fluctuations inside the boundary layer. Görtler vortices are not observed for this airfoil geometry.\",\"PeriodicalId\":239866,\"journal\":{\"name\":\"Volume 5C: Heat Transfer\",\"volume\":\"8 10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 5C: Heat Transfer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/GT2018-77135\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 5C: Heat Transfer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/GT2018-77135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

采用大涡模拟(LES)方法,对大前缘后载叶片在一定湍流条件下的压力侧换热进行了数值研究。根据Varty和Ames(2016)的实验测量,在低(Tu≈0.7%)、中(Tu≈7.9%)和高(Tu≈12.4%)不同长度尺度的自由流湍流条件下,在出口弦雷诺数Re = 5.1 × 105的线性叶栅中进行数值模拟。叶片压力侧的传热预测(即基于出口条件的斯坦顿数)与实验测量结果非常吻合,并且很好地捕获了由自由流湍流引起的传热增强。在Tu≈12.4%时,相对于低自由流湍流情况(Tu≈0.7%),自由流湍流使无边界层过渡到湍流的压力面上的Stanton数增加了最大约50%。更高的自由流湍流会产生细长的结构和高速的条纹,这些条纹缠绕在前缘周围,含有大量的能量。在更下游的尾缘附近观察到速度条纹的放大,最大r.m.s为0.3,但在压力侧没有观察到向湍流过渡或湍流斑的形成。在较高的自由流湍流中,传热增强主要是由于沿整个翼型弦持续的边界层内低频速度扰动的初始放大。斯坦顿数似乎与边界层内沿流方向的速度波动成比例。Görtler涡旋没有观察到这种翼型几何。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
LES Study of the Laminar Heat Transfer Augmentation on the Pressure Side of a Turbine Vane Under Freestream Turbulence
Vane pressure side heat transfer is studied numerically using Large Eddy Simulation (LES) on an aft loaded vane with a large leading edge over a range of turbulence conditions. Numerical simulations are performed in a linear cascade at exit chord Reynolds number of Re = 5.1 × 105 at low (Tu≈0.7%), moderate (Tu≈7.9%) and high (Tu≈12.4%) freestream turbulence with varying length scales as prescribed by the experimental measurements of Varty and Ames (2016). Heat transfer predictions (i.e. Stanton number based on exit condition) on the vane pressure side are in a very good agreement with the experimental measurements and the heat transfer augmentation due to the freestream turbulence is well captured. At Tu≈12.4%, freestream turbulence enhances the Stanton number on the pressure surface without boundary layer transition to turbulence by a maximum of about 50% relative to the low freestream turbulence case (Tu≈0.7%). Higher freestream turbulence generates elongated structures and high-velocity streaks wrapped around the leading edge that contain significant energy. Amplification of the velocity streaks is observed further downstream with max r.m.s of 0.3 near the trailing edge but no transition to turbulence or formation of turbulence spots is observed on the pressure side. The heat transfer augmentation at the higher freestream turbulence is primarily due to the initial amplification of the low-frequency velocity perturbations inside the boundary layer that persist along the entire chord of the airfoil. Stanton numbers appear to scale with the streamwise velocity fluctuations inside the boundary layer. Görtler vortices are not observed for this airfoil geometry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信