{"title":"关于直觉模糊可观测对象的Lp空间","authors":"K. Čunderlíková","doi":"10.7546/nifs.2023.29.2.90-98","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to define an $L^p$ space of intuitionistic fuzzy observables. We work in an intuitionistic fuzzy space $({\\mathcal F}, {\\bf m})$ with product, where $\\mathcal F$ is a family of intuitionistic fuzzy events and ${\\bf m}$ is an intuitionistic fuzzy state. We prove that the space $L^p$ with corresponding intuitionistic fuzzy pseudometric $\\rho_{IF}$ is a pseudometric space.","PeriodicalId":433687,"journal":{"name":"Notes on Intuitionistic Fuzzy Sets","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"About the Lp space of intuitionistic fuzzy observables\",\"authors\":\"K. Čunderlíková\",\"doi\":\"10.7546/nifs.2023.29.2.90-98\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this paper is to define an $L^p$ space of intuitionistic fuzzy observables. We work in an intuitionistic fuzzy space $({\\\\mathcal F}, {\\\\bf m})$ with product, where $\\\\mathcal F$ is a family of intuitionistic fuzzy events and ${\\\\bf m}$ is an intuitionistic fuzzy state. We prove that the space $L^p$ with corresponding intuitionistic fuzzy pseudometric $\\\\rho_{IF}$ is a pseudometric space.\",\"PeriodicalId\":433687,\"journal\":{\"name\":\"Notes on Intuitionistic Fuzzy Sets\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Notes on Intuitionistic Fuzzy Sets\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7546/nifs.2023.29.2.90-98\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Notes on Intuitionistic Fuzzy Sets","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/nifs.2023.29.2.90-98","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
About the Lp space of intuitionistic fuzzy observables
The aim of this paper is to define an $L^p$ space of intuitionistic fuzzy observables. We work in an intuitionistic fuzzy space $({\mathcal F}, {\bf m})$ with product, where $\mathcal F$ is a family of intuitionistic fuzzy events and ${\bf m}$ is an intuitionistic fuzzy state. We prove that the space $L^p$ with corresponding intuitionistic fuzzy pseudometric $\rho_{IF}$ is a pseudometric space.