基于ct扫描的Covid-19多尺度残差网络诊断

Pratyush Garg, R. Ranjan, Kamini Upadhyay, M. Agrawal, D. Deepak
{"title":"基于ct扫描的Covid-19多尺度残差网络诊断","authors":"Pratyush Garg, R. Ranjan, Kamini Upadhyay, M. Agrawal, D. Deepak","doi":"10.1109/ICASSP39728.2021.9414426","DOIUrl":null,"url":null,"abstract":"To mitigate the outbreak of highly contagious COVID-19, we need a sensitive, robust automated diagnostic tool. This paper proposes a three-level approach to separate the cases of COVID-19, pneumonia from normal patients using chest CT scans. At the first level, we fine tune a multi-scale ResNet50 model for feature extraction from all the slices of CT scan for each patient. By using multi-scale residual network, we can learn different sizes of infection, thereby making the detection possible at early stages too. These extracted features are used to train a patient-level classifier, at the second level. Four different classifiers are trained at this stage. Finally, predictions of patient level classifiers are combined by training an ensemble classifier. We test the proposed method on three sets of data released by ICASSP, COVID-19 Signal Processing Grand Challenge (SPGC). The proposed method has been successful in classifying the three classes with a validation accuracy of 94.9% and testing accuracy of 88.89%.","PeriodicalId":347060,"journal":{"name":"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Multi-Scale Residual Network for Covid-19 Diagnosis Using Ct-Scans\",\"authors\":\"Pratyush Garg, R. Ranjan, Kamini Upadhyay, M. Agrawal, D. Deepak\",\"doi\":\"10.1109/ICASSP39728.2021.9414426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To mitigate the outbreak of highly contagious COVID-19, we need a sensitive, robust automated diagnostic tool. This paper proposes a three-level approach to separate the cases of COVID-19, pneumonia from normal patients using chest CT scans. At the first level, we fine tune a multi-scale ResNet50 model for feature extraction from all the slices of CT scan for each patient. By using multi-scale residual network, we can learn different sizes of infection, thereby making the detection possible at early stages too. These extracted features are used to train a patient-level classifier, at the second level. Four different classifiers are trained at this stage. Finally, predictions of patient level classifiers are combined by training an ensemble classifier. We test the proposed method on three sets of data released by ICASSP, COVID-19 Signal Processing Grand Challenge (SPGC). The proposed method has been successful in classifying the three classes with a validation accuracy of 94.9% and testing accuracy of 88.89%.\",\"PeriodicalId\":347060,\"journal\":{\"name\":\"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP39728.2021.9414426\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP39728.2021.9414426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

为了缓解高传染性COVID-19的爆发,我们需要一种敏感、强大的自动化诊断工具。本文提出了一种利用胸部CT扫描将新冠肺炎病例与正常患者区分开来的三级方法。首先,我们对一个多尺度ResNet50模型进行微调,从每个患者的CT扫描的所有切片中提取特征。通过使用多尺度残差网络,我们可以了解不同的感染规模,从而使早期检测成为可能。在第二层,这些提取的特征用于训练患者级别的分类器。在这个阶段训练四个不同的分类器。最后,通过训练集成分类器将患者级别分类器的预测组合起来。我们在ICASSP, COVID-19信号处理大挑战(SPGC)发布的三组数据上测试了所提出的方法。该方法成功地对三类进行了分类,验证准确率为94.9%,测试准确率为88.89%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Scale Residual Network for Covid-19 Diagnosis Using Ct-Scans
To mitigate the outbreak of highly contagious COVID-19, we need a sensitive, robust automated diagnostic tool. This paper proposes a three-level approach to separate the cases of COVID-19, pneumonia from normal patients using chest CT scans. At the first level, we fine tune a multi-scale ResNet50 model for feature extraction from all the slices of CT scan for each patient. By using multi-scale residual network, we can learn different sizes of infection, thereby making the detection possible at early stages too. These extracted features are used to train a patient-level classifier, at the second level. Four different classifiers are trained at this stage. Finally, predictions of patient level classifiers are combined by training an ensemble classifier. We test the proposed method on three sets of data released by ICASSP, COVID-19 Signal Processing Grand Challenge (SPGC). The proposed method has been successful in classifying the three classes with a validation accuracy of 94.9% and testing accuracy of 88.89%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信