一种计算降阶矩阵近似的新算法

J. Manton, Y. Hua
{"title":"一种计算降阶矩阵近似的新算法","authors":"J. Manton, Y. Hua","doi":"10.1109/SPAWC.2001.923922","DOIUrl":null,"url":null,"abstract":"The problem of approximating a matrix by one of lower rank occurs in a number of signal processing problems, including reduced rank Wiener filtering and reduced rank maximum likelihood estimation. This paper derives a novel algorithm for computing the optimal rank-reduced approximation of a given matrix under an arbitrary weighted norm. Simulations demonstrate the advantages of the algorithm over the traditional alternating projections algorithm.","PeriodicalId":435867,"journal":{"name":"2001 IEEE Third Workshop on Signal Processing Advances in Wireless Communications (SPAWC'01). Workshop Proceedings (Cat. No.01EX471)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel algorithm for computing rank reduced matrix approximations\",\"authors\":\"J. Manton, Y. Hua\",\"doi\":\"10.1109/SPAWC.2001.923922\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of approximating a matrix by one of lower rank occurs in a number of signal processing problems, including reduced rank Wiener filtering and reduced rank maximum likelihood estimation. This paper derives a novel algorithm for computing the optimal rank-reduced approximation of a given matrix under an arbitrary weighted norm. Simulations demonstrate the advantages of the algorithm over the traditional alternating projections algorithm.\",\"PeriodicalId\":435867,\"journal\":{\"name\":\"2001 IEEE Third Workshop on Signal Processing Advances in Wireless Communications (SPAWC'01). Workshop Proceedings (Cat. No.01EX471)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2001 IEEE Third Workshop on Signal Processing Advances in Wireless Communications (SPAWC'01). Workshop Proceedings (Cat. No.01EX471)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPAWC.2001.923922\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2001 IEEE Third Workshop on Signal Processing Advances in Wireless Communications (SPAWC'01). Workshop Proceedings (Cat. No.01EX471)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAWC.2001.923922","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

用一个低秩矩阵逼近一个矩阵的问题出现在许多信号处理问题中,包括降秩维纳滤波和降秩极大似然估计。本文提出了一种计算给定矩阵在任意加权范数下的最优降阶逼近的新算法。仿真结果表明,该算法优于传统的交替投影算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel algorithm for computing rank reduced matrix approximations
The problem of approximating a matrix by one of lower rank occurs in a number of signal processing problems, including reduced rank Wiener filtering and reduced rank maximum likelihood estimation. This paper derives a novel algorithm for computing the optimal rank-reduced approximation of a given matrix under an arbitrary weighted norm. Simulations demonstrate the advantages of the algorithm over the traditional alternating projections algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信