{"title":"通过双周期复合体的超曲面的虚类","authors":"M. Shoemaker","doi":"10.1090/CONM/763/15326","DOIUrl":null,"url":null,"abstract":"These expository notes are based on a series of lectures given at the May 2018 Snowbird workshop, Crossing the Walls in Enumerative Geometry. We give an introductory treatment of the notion of a virtual fundamental class in algebraic geometry, and describe a new construction of the virtual fundamental class for Gromov-Witten theory of a hypersurface. The results presented here are based on joint work with I. Ciocan-Fontanine, D. Favero, J. Gu\\'er\\'e, and B. Kim.","PeriodicalId":278201,"journal":{"name":"arXiv: Algebraic Geometry","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Virtual classes for hypersurfaces via\\n two-periodic complexes\",\"authors\":\"M. Shoemaker\",\"doi\":\"10.1090/CONM/763/15326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"These expository notes are based on a series of lectures given at the May 2018 Snowbird workshop, Crossing the Walls in Enumerative Geometry. We give an introductory treatment of the notion of a virtual fundamental class in algebraic geometry, and describe a new construction of the virtual fundamental class for Gromov-Witten theory of a hypersurface. The results presented here are based on joint work with I. Ciocan-Fontanine, D. Favero, J. Gu\\\\'er\\\\'e, and B. Kim.\",\"PeriodicalId\":278201,\"journal\":{\"name\":\"arXiv: Algebraic Geometry\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/CONM/763/15326\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/CONM/763/15326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Virtual classes for hypersurfaces via
two-periodic complexes
These expository notes are based on a series of lectures given at the May 2018 Snowbird workshop, Crossing the Walls in Enumerative Geometry. We give an introductory treatment of the notion of a virtual fundamental class in algebraic geometry, and describe a new construction of the virtual fundamental class for Gromov-Witten theory of a hypersurface. The results presented here are based on joint work with I. Ciocan-Fontanine, D. Favero, J. Gu\'er\'e, and B. Kim.