基于支持向量机对铁锈图像分类的横臂复用判断系统的开发

Michiko Yamana, H. Murata, T. Onoda, Tohru Ohashi, Seiji Kato
{"title":"基于支持向量机对铁锈图像分类的横臂复用判断系统的开发","authors":"Michiko Yamana, H. Murata, T. Onoda, Tohru Ohashi, Seiji Kato","doi":"10.1109/ICTAI.2005.58","DOIUrl":null,"url":null,"abstract":"We attempt to develop a crossarm reuse judgment system based on rust images that uses machine learning techniques. The system consists of a digital camera and a standard note book personal computer (PC). We estimate the degree of accuracy of the judgment of various pattern classification methods without special image processing techniques such as the extraction of features. The results show that a support vector machine is the most suitable instrument for this judgment system. We obtain the high degree of accuracy by compressing the image data in order to decrease the number of features","PeriodicalId":294694,"journal":{"name":"17th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'05)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Development of system for crossarm reuse judgment on the basis of classification of rust images using support vector machine\",\"authors\":\"Michiko Yamana, H. Murata, T. Onoda, Tohru Ohashi, Seiji Kato\",\"doi\":\"10.1109/ICTAI.2005.58\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We attempt to develop a crossarm reuse judgment system based on rust images that uses machine learning techniques. The system consists of a digital camera and a standard note book personal computer (PC). We estimate the degree of accuracy of the judgment of various pattern classification methods without special image processing techniques such as the extraction of features. The results show that a support vector machine is the most suitable instrument for this judgment system. We obtain the high degree of accuracy by compressing the image data in order to decrease the number of features\",\"PeriodicalId\":294694,\"journal\":{\"name\":\"17th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'05)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"17th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTAI.2005.58\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"17th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2005.58","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

我们尝试开发一个基于rust图像的交叉臂重用判断系统,该系统使用机器学习技术。该系统由一台数码相机和一台标准笔记本个人电脑(PC)组成。我们估计了各种模式分类方法的判断准确性,而不需要特殊的图像处理技术,如特征提取。结果表明,支持向量机是该判断系统最合适的工具。我们通过压缩图像数据以减少特征的数量来获得较高的精度
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of system for crossarm reuse judgment on the basis of classification of rust images using support vector machine
We attempt to develop a crossarm reuse judgment system based on rust images that uses machine learning techniques. The system consists of a digital camera and a standard note book personal computer (PC). We estimate the degree of accuracy of the judgment of various pattern classification methods without special image processing techniques such as the extraction of features. The results show that a support vector machine is the most suitable instrument for this judgment system. We obtain the high degree of accuracy by compressing the image data in order to decrease the number of features
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信