Giacomo Iadarola, F. Martinelli, F. Mercaldo, A. Santone
{"title":"深度学习分类在Android恶意软件家族检测中的可靠性评估","authors":"Giacomo Iadarola, F. Martinelli, F. Mercaldo, A. Santone","doi":"10.1109/ISSREW51248.2020.00082","DOIUrl":null,"url":null,"abstract":"Artificial intelligence techniques are nowadays widespread to perform a great number of classification tasks. One of the biggest controversies regarding the adoption of these techniques is related to their use as a “black box” i.e., the security analyst must trust the prediction without the possibility to understand the reason why the classifier made a certain choice. In this paper we propose a malicious family detector based on deep learning, providing a mechanism aimed to assess the prediction reliability. The proposed method obtains an accuracy of 0.98 in Android family identification. Moreover, we show how the proposed method can assist the security analyst to interpret the output classification and verify the prediction reliability by exploiting activation maps.","PeriodicalId":202247,"journal":{"name":"2020 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Evaluating Deep Learning Classification Reliability in Android Malware Family Detection\",\"authors\":\"Giacomo Iadarola, F. Martinelli, F. Mercaldo, A. Santone\",\"doi\":\"10.1109/ISSREW51248.2020.00082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Artificial intelligence techniques are nowadays widespread to perform a great number of classification tasks. One of the biggest controversies regarding the adoption of these techniques is related to their use as a “black box” i.e., the security analyst must trust the prediction without the possibility to understand the reason why the classifier made a certain choice. In this paper we propose a malicious family detector based on deep learning, providing a mechanism aimed to assess the prediction reliability. The proposed method obtains an accuracy of 0.98 in Android family identification. Moreover, we show how the proposed method can assist the security analyst to interpret the output classification and verify the prediction reliability by exploiting activation maps.\",\"PeriodicalId\":202247,\"journal\":{\"name\":\"2020 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSREW51248.2020.00082\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSREW51248.2020.00082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Evaluating Deep Learning Classification Reliability in Android Malware Family Detection
Artificial intelligence techniques are nowadays widespread to perform a great number of classification tasks. One of the biggest controversies regarding the adoption of these techniques is related to their use as a “black box” i.e., the security analyst must trust the prediction without the possibility to understand the reason why the classifier made a certain choice. In this paper we propose a malicious family detector based on deep learning, providing a mechanism aimed to assess the prediction reliability. The proposed method obtains an accuracy of 0.98 in Android family identification. Moreover, we show how the proposed method can assist the security analyst to interpret the output classification and verify the prediction reliability by exploiting activation maps.