基于跳知识的图神经网络Android恶意软件分类

Wai Weng Lo, S. Layeghy, Mohanad Sarhan, Marcus Gallagher, Marius Portmann
{"title":"基于跳知识的图神经网络Android恶意软件分类","authors":"Wai Weng Lo, S. Layeghy, Mohanad Sarhan, Marcus Gallagher, Marius Portmann","doi":"10.1109/DSC54232.2022.9888878","DOIUrl":null,"url":null,"abstract":"This paper presents a new Android malware de-tection method based on Graph Neural Networks (GNNs) with Jumping-Knowledge (JK). Android function call graphs (FCGs) consist of a set of program functions and their inter-procedural calls. Thus, this paper proposes a GNN-based method for Android malware detection by capturing meaningful intra-procedural call path patterns. In addition, a Jumping-Knowledge technique is applied to minimize the effect of the over-smoothing problem, which is common in GNNs. The proposed method has been extensively evaluated using two benchmark datasets. The results demonstrate the superiority of our approach compared to state-of-the-art approaches in terms of key classification metrics, which demonstrates the potential of GNNs in Android malware detection and classification.","PeriodicalId":368903,"journal":{"name":"2022 IEEE Conference on Dependable and Secure Computing (DSC)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Graph Neural Network-based Android Malware Classification with Jumping Knowledge\",\"authors\":\"Wai Weng Lo, S. Layeghy, Mohanad Sarhan, Marcus Gallagher, Marius Portmann\",\"doi\":\"10.1109/DSC54232.2022.9888878\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new Android malware de-tection method based on Graph Neural Networks (GNNs) with Jumping-Knowledge (JK). Android function call graphs (FCGs) consist of a set of program functions and their inter-procedural calls. Thus, this paper proposes a GNN-based method for Android malware detection by capturing meaningful intra-procedural call path patterns. In addition, a Jumping-Knowledge technique is applied to minimize the effect of the over-smoothing problem, which is common in GNNs. The proposed method has been extensively evaluated using two benchmark datasets. The results demonstrate the superiority of our approach compared to state-of-the-art approaches in terms of key classification metrics, which demonstrates the potential of GNNs in Android malware detection and classification.\",\"PeriodicalId\":368903,\"journal\":{\"name\":\"2022 IEEE Conference on Dependable and Secure Computing (DSC)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Conference on Dependable and Secure Computing (DSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DSC54232.2022.9888878\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Conference on Dependable and Secure Computing (DSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSC54232.2022.9888878","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

提出了一种基于跳知识(JK)的图神经网络(GNNs)的Android恶意软件检测方法。Android函数调用图(FCGs)由一组程序函数及其过程间调用组成。因此,本文提出了一种基于gnn的方法,通过捕获有意义的过程内调用路径模式来检测Android恶意软件。此外,还采用了跳跃知识技术来最小化gnn中常见的过平滑问题的影响。所提出的方法已经使用两个基准数据集进行了广泛的评估。结果表明,与最先进的方法相比,我们的方法在关键分类指标方面具有优势,这证明了gnn在Android恶意软件检测和分类方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Graph Neural Network-based Android Malware Classification with Jumping Knowledge
This paper presents a new Android malware de-tection method based on Graph Neural Networks (GNNs) with Jumping-Knowledge (JK). Android function call graphs (FCGs) consist of a set of program functions and their inter-procedural calls. Thus, this paper proposes a GNN-based method for Android malware detection by capturing meaningful intra-procedural call path patterns. In addition, a Jumping-Knowledge technique is applied to minimize the effect of the over-smoothing problem, which is common in GNNs. The proposed method has been extensively evaluated using two benchmark datasets. The results demonstrate the superiority of our approach compared to state-of-the-art approaches in terms of key classification metrics, which demonstrates the potential of GNNs in Android malware detection and classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信