基于掩模R-CNN的智能无线电力传输目标检测

Aozhou Wu, Qingqing Zhang, Wen Fang, Hao Deng, Sai Jiang, Qingwen Liu, Pengfei Xia
{"title":"基于掩模R-CNN的智能无线电力传输目标检测","authors":"Aozhou Wu, Qingqing Zhang, Wen Fang, Hao Deng, Sai Jiang, Qingwen Liu, Pengfei Xia","doi":"10.1109/GLOCOMW.2018.8644387","DOIUrl":null,"url":null,"abstract":"Resonant Beam Charging (RBC) is a promising multi-Watt and multi-meter wireless power transfer method with safety, mobility and simultaneously-charging capability. However, RBC system operation relies on information availability including power receiver location, class label and the receiver number. Since smartphone is the most widely-used mobile device, we propose a Mask R-CNN based smartphone detection model in the RBC system. Experiments illustrate that our model reduces the smartphone scanning time to one third. Thus, this machine learning detection approach provides an intelligent way to improve the user experience in wireless power transfer for mobile and Internet of Things (IoT) devices.","PeriodicalId":348924,"journal":{"name":"2018 IEEE Globecom Workshops (GC Wkshps)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Mask R-CNN Based Object Detection for Intelligent Wireless Power Transfer\",\"authors\":\"Aozhou Wu, Qingqing Zhang, Wen Fang, Hao Deng, Sai Jiang, Qingwen Liu, Pengfei Xia\",\"doi\":\"10.1109/GLOCOMW.2018.8644387\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Resonant Beam Charging (RBC) is a promising multi-Watt and multi-meter wireless power transfer method with safety, mobility and simultaneously-charging capability. However, RBC system operation relies on information availability including power receiver location, class label and the receiver number. Since smartphone is the most widely-used mobile device, we propose a Mask R-CNN based smartphone detection model in the RBC system. Experiments illustrate that our model reduces the smartphone scanning time to one third. Thus, this machine learning detection approach provides an intelligent way to improve the user experience in wireless power transfer for mobile and Internet of Things (IoT) devices.\",\"PeriodicalId\":348924,\"journal\":{\"name\":\"2018 IEEE Globecom Workshops (GC Wkshps)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Globecom Workshops (GC Wkshps)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GLOCOMW.2018.8644387\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Globecom Workshops (GC Wkshps)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOCOMW.2018.8644387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

谐振束充电(RBC)是一种具有安全性、移动性和同时充电能力的多瓦、多表无线充电方式。然而,RBC系统的运行依赖于信息的可用性,包括电源接收器位置、类别标签和接收器编号。由于智能手机是使用最广泛的移动设备,我们提出了一种基于Mask R-CNN的RBC系统智能手机检测模型。实验表明,我们的模型将智能手机的扫描时间减少了三分之一。因此,这种机器学习检测方法为改善移动和物联网(IoT)设备无线电力传输的用户体验提供了一种智能方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mask R-CNN Based Object Detection for Intelligent Wireless Power Transfer
Resonant Beam Charging (RBC) is a promising multi-Watt and multi-meter wireless power transfer method with safety, mobility and simultaneously-charging capability. However, RBC system operation relies on information availability including power receiver location, class label and the receiver number. Since smartphone is the most widely-used mobile device, we propose a Mask R-CNN based smartphone detection model in the RBC system. Experiments illustrate that our model reduces the smartphone scanning time to one third. Thus, this machine learning detection approach provides an intelligent way to improve the user experience in wireless power transfer for mobile and Internet of Things (IoT) devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信