基于Q因子-临界学习的二体点吸收波能转换器非线性控制策略

L. G. Zadeh, D. Glennon, T. Brekken
{"title":"基于Q因子-临界学习的二体点吸收波能转换器非线性控制策略","authors":"L. G. Zadeh, D. Glennon, T. Brekken","doi":"10.1109/SusTech47890.2020.9150511","DOIUrl":null,"url":null,"abstract":"In this paper, a reinforcement learning method is used to tune a non-linear reactive control model parameters of a two-body point absorber Ocean Wave Energy Converter (OWEC). In particular, an Actor-Critic algorithm, as a model-free method is adopted for the maximization of the energy extraction, adaptive to the sea state. Different values of Power Take-Off (PTO) control parameters are applied to the system to observe reward and penalty of the taken action. Reward is determined by the average power over a specific time horizon lasting several wave periods. A two-body point absorber, simulated in WEC-Sim, is developed as the agent in order to validate the control strategy for different wave conditions. Results for the analyzed sea states verifies that the proposed non-linear control law learns the optimal PTO control parameters in specified sea states.","PeriodicalId":184112,"journal":{"name":"2020 IEEE Conference on Technologies for Sustainability (SusTech)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Non-Linear Control Strategy for a Two-Body Point Absorber Wave Energy Converter Using Q Actor-Critic Learning\",\"authors\":\"L. G. Zadeh, D. Glennon, T. Brekken\",\"doi\":\"10.1109/SusTech47890.2020.9150511\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a reinforcement learning method is used to tune a non-linear reactive control model parameters of a two-body point absorber Ocean Wave Energy Converter (OWEC). In particular, an Actor-Critic algorithm, as a model-free method is adopted for the maximization of the energy extraction, adaptive to the sea state. Different values of Power Take-Off (PTO) control parameters are applied to the system to observe reward and penalty of the taken action. Reward is determined by the average power over a specific time horizon lasting several wave periods. A two-body point absorber, simulated in WEC-Sim, is developed as the agent in order to validate the control strategy for different wave conditions. Results for the analyzed sea states verifies that the proposed non-linear control law learns the optimal PTO control parameters in specified sea states.\",\"PeriodicalId\":184112,\"journal\":{\"name\":\"2020 IEEE Conference on Technologies for Sustainability (SusTech)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Conference on Technologies for Sustainability (SusTech)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SusTech47890.2020.9150511\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Conference on Technologies for Sustainability (SusTech)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SusTech47890.2020.9150511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文采用强化学习方法对两体点吸收器海浪能量转换器(OWEC)的非线性无功控制模型参数进行了整定。其中,采用Actor-Critic算法,作为一种无模型的方法,使能量提取最大化,适应海况。将不同的动力起飞控制参数值应用于系统,观察所采取动作的奖励和惩罚。奖励是由持续几个波周期的特定时间范围内的平均功率决定的。为了验证该控制策略在不同波动条件下的有效性,在WEC-Sim中模拟了两体点吸收器作为agent。分析海况的结果验证了所提出的非线性控制律在特定海况下学习到最优PTO控制参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-Linear Control Strategy for a Two-Body Point Absorber Wave Energy Converter Using Q Actor-Critic Learning
In this paper, a reinforcement learning method is used to tune a non-linear reactive control model parameters of a two-body point absorber Ocean Wave Energy Converter (OWEC). In particular, an Actor-Critic algorithm, as a model-free method is adopted for the maximization of the energy extraction, adaptive to the sea state. Different values of Power Take-Off (PTO) control parameters are applied to the system to observe reward and penalty of the taken action. Reward is determined by the average power over a specific time horizon lasting several wave periods. A two-body point absorber, simulated in WEC-Sim, is developed as the agent in order to validate the control strategy for different wave conditions. Results for the analyzed sea states verifies that the proposed non-linear control law learns the optimal PTO control parameters in specified sea states.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信