{"title":"一种用于老年人跌倒检测和姿势识别的主动视觉系统","authors":"G. Diraco, A. Leone, P. Siciliano","doi":"10.1109/DATE.2010.5457055","DOIUrl":null,"url":null,"abstract":"The paper presents an active vision system for the automatic detection of falls and the recognition of several postures for elderly homecare applications. A wall-mounted Time-Of-Flight camera provides accurate measurements of the acquired scene in all illumination conditions, allowing the reliable detection of critical events. Preliminarily, an off-line calibration procedure estimates the external camera parameters automatically without landmarks, calibration patterns or user intervention. The calibration procedure searches for different planes in the scene selecting the one that accomplishes the floor plane constraints. Subsequently, the moving regions are detected in real-time by applying a Bayesian segmentation to the whole 3D points cloud. The distance of the 3D human centroid from the floor plane is evaluated by using the previously defined calibration parameters and the corresponding trend is used as feature in a thresholding-based clustering for fall detection. The fall detection shows high performances in terms of efficiency and reliability on a large real dataset in which almost one half of events are falls acquired in different conditions. The posture recognition is carried out by using both the 3D human centroid distance from the floor plane and the orientation of the body spine estimated by applying a topological approach to the range images. Experimental results on synthetic data validate the correctness of the proposed posture recognition approach.","PeriodicalId":432902,"journal":{"name":"2010 Design, Automation & Test in Europe Conference & Exhibition (DATE 2010)","volume":"14 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"137","resultStr":"{\"title\":\"An active vision system for fall detection and posture recognition in elderly healthcare\",\"authors\":\"G. Diraco, A. Leone, P. Siciliano\",\"doi\":\"10.1109/DATE.2010.5457055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents an active vision system for the automatic detection of falls and the recognition of several postures for elderly homecare applications. A wall-mounted Time-Of-Flight camera provides accurate measurements of the acquired scene in all illumination conditions, allowing the reliable detection of critical events. Preliminarily, an off-line calibration procedure estimates the external camera parameters automatically without landmarks, calibration patterns or user intervention. The calibration procedure searches for different planes in the scene selecting the one that accomplishes the floor plane constraints. Subsequently, the moving regions are detected in real-time by applying a Bayesian segmentation to the whole 3D points cloud. The distance of the 3D human centroid from the floor plane is evaluated by using the previously defined calibration parameters and the corresponding trend is used as feature in a thresholding-based clustering for fall detection. The fall detection shows high performances in terms of efficiency and reliability on a large real dataset in which almost one half of events are falls acquired in different conditions. The posture recognition is carried out by using both the 3D human centroid distance from the floor plane and the orientation of the body spine estimated by applying a topological approach to the range images. Experimental results on synthetic data validate the correctness of the proposed posture recognition approach.\",\"PeriodicalId\":432902,\"journal\":{\"name\":\"2010 Design, Automation & Test in Europe Conference & Exhibition (DATE 2010)\",\"volume\":\"14 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"137\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Design, Automation & Test in Europe Conference & Exhibition (DATE 2010)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DATE.2010.5457055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Design, Automation & Test in Europe Conference & Exhibition (DATE 2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DATE.2010.5457055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An active vision system for fall detection and posture recognition in elderly healthcare
The paper presents an active vision system for the automatic detection of falls and the recognition of several postures for elderly homecare applications. A wall-mounted Time-Of-Flight camera provides accurate measurements of the acquired scene in all illumination conditions, allowing the reliable detection of critical events. Preliminarily, an off-line calibration procedure estimates the external camera parameters automatically without landmarks, calibration patterns or user intervention. The calibration procedure searches for different planes in the scene selecting the one that accomplishes the floor plane constraints. Subsequently, the moving regions are detected in real-time by applying a Bayesian segmentation to the whole 3D points cloud. The distance of the 3D human centroid from the floor plane is evaluated by using the previously defined calibration parameters and the corresponding trend is used as feature in a thresholding-based clustering for fall detection. The fall detection shows high performances in terms of efficiency and reliability on a large real dataset in which almost one half of events are falls acquired in different conditions. The posture recognition is carried out by using both the 3D human centroid distance from the floor plane and the orientation of the body spine estimated by applying a topological approach to the range images. Experimental results on synthetic data validate the correctness of the proposed posture recognition approach.