基于HER-DDPG算法的7自由度手术机器人动态轨迹规划

Qitao Hou, Chenchen Gu, Xiaoyu Wang, Yating Zhang, Ping Zhao
{"title":"基于HER-DDPG算法的7自由度手术机器人动态轨迹规划","authors":"Qitao Hou, Chenchen Gu, Xiaoyu Wang, Yating Zhang, Ping Zhao","doi":"10.1115/imece2021-70294","DOIUrl":null,"url":null,"abstract":"\n Traditional trajectory planning approaches are currently lacking in intelligence and autonomy. We used the reinforcement learning approach to solve the autonomous trajectory planning of the robot arm to avoid obstacles with uniform motion and hit the target point quickly with obstacle avoidance planning for surgical robots taken as the practical background. We used the algorithm of experience playback mechanism combined with off-policy DDPG based on reinforcement learning, and after several iterations, the robot completed trajectory planning with obstacle avoidance autonomously. Moving obstacles were added to roughly simulate the autonomous obstacle avoidance of a surgical robotic arm with moving medical personnel or mobile instruments in the operating room, based on the simple trajectory planning example of Open-AI Open-Source Project Baseline, combined with the research context. Sparse rewards were used for each iteration based on the HER algorithm, so that each attempt could gain experience. The HER-DDPG method can quickly complete the manipulator’s trajectory planning in a simulation environment, which is critical for the surgical robot’s autonomous positioning in the real world. Furthermore, the experience playback system has been tested to allow full use of sparse rewards and handle parallel tasks equally well.","PeriodicalId":314012,"journal":{"name":"Volume 5: Biomedical and Biotechnology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic Trajectory Planning of a 7-DOF Surgical Robot Based on HER-DDPG Algorithm\",\"authors\":\"Qitao Hou, Chenchen Gu, Xiaoyu Wang, Yating Zhang, Ping Zhao\",\"doi\":\"10.1115/imece2021-70294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Traditional trajectory planning approaches are currently lacking in intelligence and autonomy. We used the reinforcement learning approach to solve the autonomous trajectory planning of the robot arm to avoid obstacles with uniform motion and hit the target point quickly with obstacle avoidance planning for surgical robots taken as the practical background. We used the algorithm of experience playback mechanism combined with off-policy DDPG based on reinforcement learning, and after several iterations, the robot completed trajectory planning with obstacle avoidance autonomously. Moving obstacles were added to roughly simulate the autonomous obstacle avoidance of a surgical robotic arm with moving medical personnel or mobile instruments in the operating room, based on the simple trajectory planning example of Open-AI Open-Source Project Baseline, combined with the research context. Sparse rewards were used for each iteration based on the HER algorithm, so that each attempt could gain experience. The HER-DDPG method can quickly complete the manipulator’s trajectory planning in a simulation environment, which is critical for the surgical robot’s autonomous positioning in the real world. Furthermore, the experience playback system has been tested to allow full use of sparse rewards and handle parallel tasks equally well.\",\"PeriodicalId\":314012,\"journal\":{\"name\":\"Volume 5: Biomedical and Biotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 5: Biomedical and Biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2021-70294\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 5: Biomedical and Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2021-70294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

传统的轨迹规划方法目前缺乏智能和自主性。我们以外科手术机器人避障规划为实践背景,采用强化学习方法解决机器人手臂的自主轨迹规划问题,以避免匀速运动的障碍物并快速到达目标点。我们采用了基于强化学习的经验回放机制与off-policy DDPG相结合的算法,经过多次迭代,机器人自主完成了避障轨迹规划。基于Open-AI开源项目基线的简单轨迹规划示例,结合研究背景,加入移动障碍物,大致模拟手术机械臂在手术室中移动医务人员或移动器械的自主避障。基于HER算法的每次迭代都使用稀疏奖励,使每次尝试都能获得经验。HER-DDPG方法可以在仿真环境下快速完成手术机器人的轨迹规划,这对于手术机器人在现实世界中的自主定位至关重要。此外,经验回放系统已经过测试,允许充分利用稀疏奖励和处理并行任务同样好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic Trajectory Planning of a 7-DOF Surgical Robot Based on HER-DDPG Algorithm
Traditional trajectory planning approaches are currently lacking in intelligence and autonomy. We used the reinforcement learning approach to solve the autonomous trajectory planning of the robot arm to avoid obstacles with uniform motion and hit the target point quickly with obstacle avoidance planning for surgical robots taken as the practical background. We used the algorithm of experience playback mechanism combined with off-policy DDPG based on reinforcement learning, and after several iterations, the robot completed trajectory planning with obstacle avoidance autonomously. Moving obstacles were added to roughly simulate the autonomous obstacle avoidance of a surgical robotic arm with moving medical personnel or mobile instruments in the operating room, based on the simple trajectory planning example of Open-AI Open-Source Project Baseline, combined with the research context. Sparse rewards were used for each iteration based on the HER algorithm, so that each attempt could gain experience. The HER-DDPG method can quickly complete the manipulator’s trajectory planning in a simulation environment, which is critical for the surgical robot’s autonomous positioning in the real world. Furthermore, the experience playback system has been tested to allow full use of sparse rewards and handle parallel tasks equally well.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信