CPNet:一种用于检测单个RGB图像阴影的上下文保护卷积神经网络

S. Mohajerani, Parvaneh Saeedi
{"title":"CPNet:一种用于检测单个RGB图像阴影的上下文保护卷积神经网络","authors":"S. Mohajerani, Parvaneh Saeedi","doi":"10.1109/MMSP.2018.8547080","DOIUrl":null,"url":null,"abstract":"Automatic detection of shadow regions in an image is a difficult task due to the lack of prior information about the illumination source and the dynamic of the scene objects. To address this problem, in this paper, a deep-learning based segmentation method is proposed that identifies shadow regions at the pixel-level in a single RGB image. We exploit a novel Convolutional Neural Network (CNN) architecture to identify and extract shadow features in an end-to-end manner. This network preserves learned contexts during the training and observes the entire image to detect global and local shadow patterns simultaneously. The proposed method is evaluated on two publicly available datasets of SBU and UCF. We have improved the state-of-the-art Balanced Error Rate (BER) on these datasets by 22 % and 14 %, respectively.","PeriodicalId":137522,"journal":{"name":"2018 IEEE 20th International Workshop on Multimedia Signal Processing (MMSP)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"CPNet: A Context Preserver Convolutional Neural Network for Detecting Shadows in Single RGB Images\",\"authors\":\"S. Mohajerani, Parvaneh Saeedi\",\"doi\":\"10.1109/MMSP.2018.8547080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic detection of shadow regions in an image is a difficult task due to the lack of prior information about the illumination source and the dynamic of the scene objects. To address this problem, in this paper, a deep-learning based segmentation method is proposed that identifies shadow regions at the pixel-level in a single RGB image. We exploit a novel Convolutional Neural Network (CNN) architecture to identify and extract shadow features in an end-to-end manner. This network preserves learned contexts during the training and observes the entire image to detect global and local shadow patterns simultaneously. The proposed method is evaluated on two publicly available datasets of SBU and UCF. We have improved the state-of-the-art Balanced Error Rate (BER) on these datasets by 22 % and 14 %, respectively.\",\"PeriodicalId\":137522,\"journal\":{\"name\":\"2018 IEEE 20th International Workshop on Multimedia Signal Processing (MMSP)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 20th International Workshop on Multimedia Signal Processing (MMSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMSP.2018.8547080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 20th International Workshop on Multimedia Signal Processing (MMSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2018.8547080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

由于缺乏光照源和场景物体动态的先验信息,图像阴影区域的自动检测是一项困难的任务。为了解决这个问题,本文提出了一种基于深度学习的分割方法,在单个RGB图像中识别像素级的阴影区域。我们利用一种新颖的卷积神经网络(CNN)架构以端到端方式识别和提取阴影特征。该网络在训练过程中保留学习到的上下文,并观察整个图像,同时检测全局和局部阴影模式。在SBU和UCF两个公开可用的数据集上对该方法进行了评估。我们已经将这些数据集上最先进的平衡错误率(BER)分别提高了22%和14%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CPNet: A Context Preserver Convolutional Neural Network for Detecting Shadows in Single RGB Images
Automatic detection of shadow regions in an image is a difficult task due to the lack of prior information about the illumination source and the dynamic of the scene objects. To address this problem, in this paper, a deep-learning based segmentation method is proposed that identifies shadow regions at the pixel-level in a single RGB image. We exploit a novel Convolutional Neural Network (CNN) architecture to identify and extract shadow features in an end-to-end manner. This network preserves learned contexts during the training and observes the entire image to detect global and local shadow patterns simultaneously. The proposed method is evaluated on two publicly available datasets of SBU and UCF. We have improved the state-of-the-art Balanced Error Rate (BER) on these datasets by 22 % and 14 %, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信