基于Res-BP神经网络的民用航空发动机气路参数偏差回归模型

Xingjie Zhou, Xu-yun Fu, Minghang Zhao, S. Zhong
{"title":"基于Res-BP神经网络的民用航空发动机气路参数偏差回归模型","authors":"Xingjie Zhou, Xu-yun Fu, Minghang Zhao, S. Zhong","doi":"10.1109/SDPC.2019.00042","DOIUrl":null,"url":null,"abstract":"The gas path parameter deviations as crucial parameters can assist each airline to realize the performance state trend analysis, life prediction and fault diagnosis of aero-engine. However, the calculation of gas path parameter deviations is complicated and the calculation models are also mastered by the original equipment manufacturer (OEM), which makes it burdensome for airlines to independently analyze the gas path performance of the aeroengine. At present, airlines have accumulated a large number of samples of gas path parameter deviations, which makes it possible to establish a regression model between gas path parameters and its deviations by data-driven method. In order to enhance the analysis capability of airline in gas path performance, we apply the residual learning blocks to the back propagation (BP) neural network based on the learning mechanism of the residual networks (ResNets). According to the solution characteristics of gas path parameter deviations, the regression models for the gas path parameter deviations are established based on Res-BP neural network. The screening for nonlinear independent variables of regression model is carried out by mean impact value (MIV) method, and then the input and output of Res-BP neural network can be determined. After the regression model training, the test set is tested by the proposed regression model. By comparing with BP neural network regression model and traditional regression model, the proposed regression model manifests higher prediction accuracy and generalization performance on the three key gas path parameter deviations, which is of great guiding significance for the aero-engine condition monitoring.","PeriodicalId":403595,"journal":{"name":"2019 International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Regression Model for Civil Aero-engine Gas Path Parameter Deviations Based on Res-BP Neural Network\",\"authors\":\"Xingjie Zhou, Xu-yun Fu, Minghang Zhao, S. Zhong\",\"doi\":\"10.1109/SDPC.2019.00042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The gas path parameter deviations as crucial parameters can assist each airline to realize the performance state trend analysis, life prediction and fault diagnosis of aero-engine. However, the calculation of gas path parameter deviations is complicated and the calculation models are also mastered by the original equipment manufacturer (OEM), which makes it burdensome for airlines to independently analyze the gas path performance of the aeroengine. At present, airlines have accumulated a large number of samples of gas path parameter deviations, which makes it possible to establish a regression model between gas path parameters and its deviations by data-driven method. In order to enhance the analysis capability of airline in gas path performance, we apply the residual learning blocks to the back propagation (BP) neural network based on the learning mechanism of the residual networks (ResNets). According to the solution characteristics of gas path parameter deviations, the regression models for the gas path parameter deviations are established based on Res-BP neural network. The screening for nonlinear independent variables of regression model is carried out by mean impact value (MIV) method, and then the input and output of Res-BP neural network can be determined. After the regression model training, the test set is tested by the proposed regression model. By comparing with BP neural network regression model and traditional regression model, the proposed regression model manifests higher prediction accuracy and generalization performance on the three key gas path parameter deviations, which is of great guiding significance for the aero-engine condition monitoring.\",\"PeriodicalId\":403595,\"journal\":{\"name\":\"2019 International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SDPC.2019.00042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SDPC.2019.00042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

气路参数偏差作为关键参数,可以帮助各航空公司实现航空发动机性能状态趋势分析、寿命预测和故障诊断。然而,气路参数偏差计算复杂,且计算模型又由原始设备制造商(OEM)掌握,这给航空公司独立分析航空发动机气路性能带来了很大的负担。目前航空公司已经积累了大量的气路参数偏差样本,这使得通过数据驱动的方法建立气路参数与其偏差之间的回归模型成为可能。为了提高航空公司气路性能的分析能力,基于残差网络的学习机制(ResNets),将残差学习块应用到BP神经网络中。根据气路参数偏差的求解特点,建立了基于Res-BP神经网络的气路参数偏差回归模型。采用平均影响值法对回归模型的非线性自变量进行筛选,从而确定Res-BP神经网络的输入和输出。回归模型训练完成后,对测试集进行回归模型测试。通过与BP神经网络回归模型和传统回归模型的比较,所提出的回归模型对三种关键气路参数偏差的预测精度和泛化性能均有所提高,对航空发动机状态监测具有重要的指导意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Regression Model for Civil Aero-engine Gas Path Parameter Deviations Based on Res-BP Neural Network
The gas path parameter deviations as crucial parameters can assist each airline to realize the performance state trend analysis, life prediction and fault diagnosis of aero-engine. However, the calculation of gas path parameter deviations is complicated and the calculation models are also mastered by the original equipment manufacturer (OEM), which makes it burdensome for airlines to independently analyze the gas path performance of the aeroengine. At present, airlines have accumulated a large number of samples of gas path parameter deviations, which makes it possible to establish a regression model between gas path parameters and its deviations by data-driven method. In order to enhance the analysis capability of airline in gas path performance, we apply the residual learning blocks to the back propagation (BP) neural network based on the learning mechanism of the residual networks (ResNets). According to the solution characteristics of gas path parameter deviations, the regression models for the gas path parameter deviations are established based on Res-BP neural network. The screening for nonlinear independent variables of regression model is carried out by mean impact value (MIV) method, and then the input and output of Res-BP neural network can be determined. After the regression model training, the test set is tested by the proposed regression model. By comparing with BP neural network regression model and traditional regression model, the proposed regression model manifests higher prediction accuracy and generalization performance on the three key gas path parameter deviations, which is of great guiding significance for the aero-engine condition monitoring.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信