基于spot6卫星图像的水田自动地图金字塔场景解析网模型

Y. Heryadi, E. Irwansyah, Eka Miranda, Haryono Soeparno, Herlawati, Kiyota Hashimoto
{"title":"基于spot6卫星图像的水田自动地图金字塔场景解析网模型","authors":"Y. Heryadi, E. Irwansyah, Eka Miranda, Haryono Soeparno, Herlawati, Kiyota Hashimoto","doi":"10.1109/AGERS56232.2022.10093406","DOIUrl":null,"url":null,"abstract":"Food sustainability is still one of the main priorities for many countries as it contributes to the economy and stability of the nation. For government in many countries whose peoples consumes rice as its staple food, food self-sufficiency initiatives highly depend on accurate prediction of paddy field map. Mapping paddy field task is a challenging problem which cannot be handled manually especially when the paddy fields are spread out in very wide geographical areas such as those in Indonesia. Fortunately, wide availability of satellite imagery and the advent of deep learning technology in the past ten years have made it possible to improve efficiency of most parts of those manual works involving image semantic segmentation tasks. However, satellite image-based semantic segmentation is a challenging task. High object complexity, cloud partial occlusion, larger image size than a computer memory can stored can hinder accuracy of the image segmentation results. This paper presents a method for paddy field map generating using semantic image segmentation approach in which Pyramid Scene Parsing Net model is used for segmenting satellite imagery. The generated paddy map can be used as a basis for decision-making, especially in the agricultural sector. Analysis of local land use/land cover dynamics. The results of his experiments using SPOT 6 satellite imagery from the Pahung region of Central Kalimantan achieved average training accuracy, best training accuracy and test accuracy of 0.85, 0.86 and 0.89 respectively. These results indicated that the semantic segmentation model is suitable for addressing the same task in different crops.","PeriodicalId":370213,"journal":{"name":"2022 IEEE Asia-Pacific Conference on Geoscience, Electronics and Remote Sensing Technology (AGERS)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pyramid Scene Parsing Net Model for Automated Paddy Field Map using SPOT 6 Satellite Images\",\"authors\":\"Y. Heryadi, E. Irwansyah, Eka Miranda, Haryono Soeparno, Herlawati, Kiyota Hashimoto\",\"doi\":\"10.1109/AGERS56232.2022.10093406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Food sustainability is still one of the main priorities for many countries as it contributes to the economy and stability of the nation. For government in many countries whose peoples consumes rice as its staple food, food self-sufficiency initiatives highly depend on accurate prediction of paddy field map. Mapping paddy field task is a challenging problem which cannot be handled manually especially when the paddy fields are spread out in very wide geographical areas such as those in Indonesia. Fortunately, wide availability of satellite imagery and the advent of deep learning technology in the past ten years have made it possible to improve efficiency of most parts of those manual works involving image semantic segmentation tasks. However, satellite image-based semantic segmentation is a challenging task. High object complexity, cloud partial occlusion, larger image size than a computer memory can stored can hinder accuracy of the image segmentation results. This paper presents a method for paddy field map generating using semantic image segmentation approach in which Pyramid Scene Parsing Net model is used for segmenting satellite imagery. The generated paddy map can be used as a basis for decision-making, especially in the agricultural sector. Analysis of local land use/land cover dynamics. The results of his experiments using SPOT 6 satellite imagery from the Pahung region of Central Kalimantan achieved average training accuracy, best training accuracy and test accuracy of 0.85, 0.86 and 0.89 respectively. These results indicated that the semantic segmentation model is suitable for addressing the same task in different crops.\",\"PeriodicalId\":370213,\"journal\":{\"name\":\"2022 IEEE Asia-Pacific Conference on Geoscience, Electronics and Remote Sensing Technology (AGERS)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Asia-Pacific Conference on Geoscience, Electronics and Remote Sensing Technology (AGERS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AGERS56232.2022.10093406\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Asia-Pacific Conference on Geoscience, Electronics and Remote Sensing Technology (AGERS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AGERS56232.2022.10093406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

粮食可持续性仍然是许多国家的主要优先事项之一,因为它有助于国家的经济和稳定。对于许多以大米为主食的国家的政府来说,粮食自给自足的举措高度依赖于对稻田地图的准确预测。水田测绘是一个具有挑战性的问题,特别是当水田分布在非常广泛的地理区域时,例如印度尼西亚。幸运的是,在过去十年中,卫星图像的广泛可用性和深度学习技术的出现使得涉及图像语义分割任务的大部分手工工作的效率得以提高。然而,基于卫星图像的语义分割是一项具有挑战性的任务。高目标复杂性、云的局部遮挡、大于计算机内存存储的图像大小都会影响图像分割结果的准确性。本文提出了一种基于语义图像分割的水田地图生成方法,该方法利用金字塔场景解析网模型对卫星图像进行分割。生成的水田图可作为决策的基础,特别是在农业部门。本地土地利用/土地覆盖动态分析。他利用中央加里曼丹Pahung地区的SPOT 6卫星图像进行实验,其平均训练精度、最佳训练精度和测试精度分别为0.85、0.86和0.89。这些结果表明,该语义分割模型适用于不同作物的同一任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pyramid Scene Parsing Net Model for Automated Paddy Field Map using SPOT 6 Satellite Images
Food sustainability is still one of the main priorities for many countries as it contributes to the economy and stability of the nation. For government in many countries whose peoples consumes rice as its staple food, food self-sufficiency initiatives highly depend on accurate prediction of paddy field map. Mapping paddy field task is a challenging problem which cannot be handled manually especially when the paddy fields are spread out in very wide geographical areas such as those in Indonesia. Fortunately, wide availability of satellite imagery and the advent of deep learning technology in the past ten years have made it possible to improve efficiency of most parts of those manual works involving image semantic segmentation tasks. However, satellite image-based semantic segmentation is a challenging task. High object complexity, cloud partial occlusion, larger image size than a computer memory can stored can hinder accuracy of the image segmentation results. This paper presents a method for paddy field map generating using semantic image segmentation approach in which Pyramid Scene Parsing Net model is used for segmenting satellite imagery. The generated paddy map can be used as a basis for decision-making, especially in the agricultural sector. Analysis of local land use/land cover dynamics. The results of his experiments using SPOT 6 satellite imagery from the Pahung region of Central Kalimantan achieved average training accuracy, best training accuracy and test accuracy of 0.85, 0.86 and 0.89 respectively. These results indicated that the semantic segmentation model is suitable for addressing the same task in different crops.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信