{"title":"一种辨识非线性动态系统的新方法","authors":"Ching-Hung Lee, C. Teng","doi":"10.23919/ECC.1999.7099704","DOIUrl":null,"url":null,"abstract":"This paper presents a new method for identifying a nonlinear system using the Hammerstein model. Such model consists of static nonlinear part and linear dynamic part in a cascading structure. The static nonlinear part is modeled by a fuzzy neural network (FNN), and the linear dynamic part is modeled by an auto-regressive moving average (ARMA) model. Based on our approach, a nonlinear dynamical system can be divided into two parts, a nonlinear static function and an ARMA model. Furthermore, a simple learning algorithm is developed for obtaining the parameters of FNN and ARMA model. In addition, the convergence analysis for the cascade model (FNN+ARMA) is also studied by the Lyapunov approach. A simulation result is given to illustrate the effectiveness of the proposed method. Simulation result also demonstrates that this approach is useful for systems with disturbance input.","PeriodicalId":117668,"journal":{"name":"1999 European Control Conference (ECC)","volume":"136 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A novel method to identify nonlinear dynamic systems\",\"authors\":\"Ching-Hung Lee, C. Teng\",\"doi\":\"10.23919/ECC.1999.7099704\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new method for identifying a nonlinear system using the Hammerstein model. Such model consists of static nonlinear part and linear dynamic part in a cascading structure. The static nonlinear part is modeled by a fuzzy neural network (FNN), and the linear dynamic part is modeled by an auto-regressive moving average (ARMA) model. Based on our approach, a nonlinear dynamical system can be divided into two parts, a nonlinear static function and an ARMA model. Furthermore, a simple learning algorithm is developed for obtaining the parameters of FNN and ARMA model. In addition, the convergence analysis for the cascade model (FNN+ARMA) is also studied by the Lyapunov approach. A simulation result is given to illustrate the effectiveness of the proposed method. Simulation result also demonstrates that this approach is useful for systems with disturbance input.\",\"PeriodicalId\":117668,\"journal\":{\"name\":\"1999 European Control Conference (ECC)\",\"volume\":\"136 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1999 European Control Conference (ECC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ECC.1999.7099704\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1999 European Control Conference (ECC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ECC.1999.7099704","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A novel method to identify nonlinear dynamic systems
This paper presents a new method for identifying a nonlinear system using the Hammerstein model. Such model consists of static nonlinear part and linear dynamic part in a cascading structure. The static nonlinear part is modeled by a fuzzy neural network (FNN), and the linear dynamic part is modeled by an auto-regressive moving average (ARMA) model. Based on our approach, a nonlinear dynamical system can be divided into two parts, a nonlinear static function and an ARMA model. Furthermore, a simple learning algorithm is developed for obtaining the parameters of FNN and ARMA model. In addition, the convergence analysis for the cascade model (FNN+ARMA) is also studied by the Lyapunov approach. A simulation result is given to illustrate the effectiveness of the proposed method. Simulation result also demonstrates that this approach is useful for systems with disturbance input.