一种辨识非线性动态系统的新方法

Ching-Hung Lee, C. Teng
{"title":"一种辨识非线性动态系统的新方法","authors":"Ching-Hung Lee, C. Teng","doi":"10.23919/ECC.1999.7099704","DOIUrl":null,"url":null,"abstract":"This paper presents a new method for identifying a nonlinear system using the Hammerstein model. Such model consists of static nonlinear part and linear dynamic part in a cascading structure. The static nonlinear part is modeled by a fuzzy neural network (FNN), and the linear dynamic part is modeled by an auto-regressive moving average (ARMA) model. Based on our approach, a nonlinear dynamical system can be divided into two parts, a nonlinear static function and an ARMA model. Furthermore, a simple learning algorithm is developed for obtaining the parameters of FNN and ARMA model. In addition, the convergence analysis for the cascade model (FNN+ARMA) is also studied by the Lyapunov approach. A simulation result is given to illustrate the effectiveness of the proposed method. Simulation result also demonstrates that this approach is useful for systems with disturbance input.","PeriodicalId":117668,"journal":{"name":"1999 European Control Conference (ECC)","volume":"136 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A novel method to identify nonlinear dynamic systems\",\"authors\":\"Ching-Hung Lee, C. Teng\",\"doi\":\"10.23919/ECC.1999.7099704\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new method for identifying a nonlinear system using the Hammerstein model. Such model consists of static nonlinear part and linear dynamic part in a cascading structure. The static nonlinear part is modeled by a fuzzy neural network (FNN), and the linear dynamic part is modeled by an auto-regressive moving average (ARMA) model. Based on our approach, a nonlinear dynamical system can be divided into two parts, a nonlinear static function and an ARMA model. Furthermore, a simple learning algorithm is developed for obtaining the parameters of FNN and ARMA model. In addition, the convergence analysis for the cascade model (FNN+ARMA) is also studied by the Lyapunov approach. A simulation result is given to illustrate the effectiveness of the proposed method. Simulation result also demonstrates that this approach is useful for systems with disturbance input.\",\"PeriodicalId\":117668,\"journal\":{\"name\":\"1999 European Control Conference (ECC)\",\"volume\":\"136 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1999 European Control Conference (ECC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ECC.1999.7099704\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1999 European Control Conference (ECC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ECC.1999.7099704","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种利用Hammerstein模型辨识非线性系统的新方法。该模型由级联结构中的静态非线性部分和线性动态部分组成。静态非线性部分采用模糊神经网络(FNN)建模,线性动态部分采用自回归移动平均(ARMA)模型建模。基于该方法,非线性动力系统可分为非线性静态函数和ARMA模型两部分。此外,提出了一种简单的学习算法来获取FNN和ARMA模型的参数。此外,本文还采用Lyapunov方法研究了级联模型(FNN+ARMA)的收敛性分析。仿真结果验证了该方法的有效性。仿真结果也证明了该方法对具有扰动输入的系统是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel method to identify nonlinear dynamic systems
This paper presents a new method for identifying a nonlinear system using the Hammerstein model. Such model consists of static nonlinear part and linear dynamic part in a cascading structure. The static nonlinear part is modeled by a fuzzy neural network (FNN), and the linear dynamic part is modeled by an auto-regressive moving average (ARMA) model. Based on our approach, a nonlinear dynamical system can be divided into two parts, a nonlinear static function and an ARMA model. Furthermore, a simple learning algorithm is developed for obtaining the parameters of FNN and ARMA model. In addition, the convergence analysis for the cascade model (FNN+ARMA) is also studied by the Lyapunov approach. A simulation result is given to illustrate the effectiveness of the proposed method. Simulation result also demonstrates that this approach is useful for systems with disturbance input.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信