高频连续心电测量识别心肌梗死

Jonas Sandelin, T. Koivisto, Jukka Sirkiä, A. Anzanpour
{"title":"高频连续心电测量识别心肌梗死","authors":"Jonas Sandelin, T. Koivisto, Jukka Sirkiä, A. Anzanpour","doi":"10.22489/CinC.2022.185","DOIUrl":null,"url":null,"abstract":"The purpose of this study is to attempt to identify acute myocardial infarction with high frequency serial electrocardiogram which both are ECG analyzing techniques. The idea is to combine these two techniques and see if changes between different ECGs from the same person can provide us with some information, whether it being in the high frequency or normal frequency range of ECG. A heart attack can occur at any time and therefore the possibility of using a wearable device was also researched. To answer the questions, an existing database which contained multiple ECGs for each person with high sampling frequency was used. On top of this, a new serial ECG database was gathered using a wearable device designed by the University of Turku. Using multiple ECGs, features were extracted from the signals and then used in different machine learning methods in order to classify the subjects. All of the methods seem to be relevant. High frequency ECG was found to be useful, while serial ECG provided us good results with both databases. The device was also found to be able to produce good quality ECG.","PeriodicalId":117840,"journal":{"name":"2022 Computing in Cardiology (CinC)","volume":"498 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of Myocardial Infarction by High Frequency Serial ECG Measurement\",\"authors\":\"Jonas Sandelin, T. Koivisto, Jukka Sirkiä, A. Anzanpour\",\"doi\":\"10.22489/CinC.2022.185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this study is to attempt to identify acute myocardial infarction with high frequency serial electrocardiogram which both are ECG analyzing techniques. The idea is to combine these two techniques and see if changes between different ECGs from the same person can provide us with some information, whether it being in the high frequency or normal frequency range of ECG. A heart attack can occur at any time and therefore the possibility of using a wearable device was also researched. To answer the questions, an existing database which contained multiple ECGs for each person with high sampling frequency was used. On top of this, a new serial ECG database was gathered using a wearable device designed by the University of Turku. Using multiple ECGs, features were extracted from the signals and then used in different machine learning methods in order to classify the subjects. All of the methods seem to be relevant. High frequency ECG was found to be useful, while serial ECG provided us good results with both databases. The device was also found to be able to produce good quality ECG.\",\"PeriodicalId\":117840,\"journal\":{\"name\":\"2022 Computing in Cardiology (CinC)\",\"volume\":\"498 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Computing in Cardiology (CinC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22489/CinC.2022.185\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Computing in Cardiology (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22489/CinC.2022.185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究的目的是尝试用高频序列心电图识别急性心肌梗死,这两种方法都是心电图分析技术。我们的想法是将这两种技术结合起来,看看同一个人不同心电图之间的变化是否可以为我们提供一些信息,无论是在心电图的高频还是正常频率范围内。心脏病发作随时可能发生,因此也研究了使用可穿戴设备的可能性。为了回答这些问题,使用了一个现有的数据库,其中包含每个人的多个心电图,采样频率高。在此基础上,使用图尔库大学设计的可穿戴设备收集了一个新的串行ECG数据库。使用多个心电图,从信号中提取特征,然后将其用于不同的机器学习方法,以便对受试者进行分类。所有的方法似乎都是相关的。发现高频心电图是有用的,而序列心电图在两个数据库中都提供了良好的结果。该装置还能产生高质量的心电图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification of Myocardial Infarction by High Frequency Serial ECG Measurement
The purpose of this study is to attempt to identify acute myocardial infarction with high frequency serial electrocardiogram which both are ECG analyzing techniques. The idea is to combine these two techniques and see if changes between different ECGs from the same person can provide us with some information, whether it being in the high frequency or normal frequency range of ECG. A heart attack can occur at any time and therefore the possibility of using a wearable device was also researched. To answer the questions, an existing database which contained multiple ECGs for each person with high sampling frequency was used. On top of this, a new serial ECG database was gathered using a wearable device designed by the University of Turku. Using multiple ECGs, features were extracted from the signals and then used in different machine learning methods in order to classify the subjects. All of the methods seem to be relevant. High frequency ECG was found to be useful, while serial ECG provided us good results with both databases. The device was also found to be able to produce good quality ECG.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信