{"title":"基于移动补偿技术的1v电压下高速伪差分OTA","authors":"Tien-Yu Lo, C. Hung","doi":"10.1109/ASSCC.2006.357876","DOIUrl":null,"url":null,"abstract":"This paper presents a high linearity operational transconductance amplifier (OTA) based on pseudo-differential structures. The linearity is improved by mobility compensation techniques as the device size is scaled down to achieve high speed operation. Transconductance tuning could be achieved by a MOS operating in the linear region. The OTA fabricated in the TSMC 0.18-mum CMOS process occupies a small area of 4.5 times 10-3 mm2. The measured third-order inter-modulation (IM3) distortion under 1-V power supply voltage remains below -52 dB up to 50 MHz for a 400 mV pp differential input. The static power consumption is 2.5 mW. Experimental results demonstrate the agreement with theoretical analyses.","PeriodicalId":142478,"journal":{"name":"2006 IEEE Asian Solid-State Circuits Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A High Speed Pseudo-Differential OTA with Mobility Compensation Technique in 1-V Power Supply Voltage\",\"authors\":\"Tien-Yu Lo, C. Hung\",\"doi\":\"10.1109/ASSCC.2006.357876\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a high linearity operational transconductance amplifier (OTA) based on pseudo-differential structures. The linearity is improved by mobility compensation techniques as the device size is scaled down to achieve high speed operation. Transconductance tuning could be achieved by a MOS operating in the linear region. The OTA fabricated in the TSMC 0.18-mum CMOS process occupies a small area of 4.5 times 10-3 mm2. The measured third-order inter-modulation (IM3) distortion under 1-V power supply voltage remains below -52 dB up to 50 MHz for a 400 mV pp differential input. The static power consumption is 2.5 mW. Experimental results demonstrate the agreement with theoretical analyses.\",\"PeriodicalId\":142478,\"journal\":{\"name\":\"2006 IEEE Asian Solid-State Circuits Conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE Asian Solid-State Circuits Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASSCC.2006.357876\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Asian Solid-State Circuits Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASSCC.2006.357876","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
摘要
提出了一种基于伪差分结构的高线性运算跨导放大器。当器件尺寸缩小以实现高速运行时,通过迁移率补偿技术改善了线性度。跨导调谐可以通过在线性区域工作的MOS来实现。采用台积电0.18 mm CMOS工艺制备的OTA占地面积很小,仅为4.5 × 10-3 mm2。对于400mv pp差分输入,在1v电源电压下,测量到的三阶互调(IM3)失真在50mhz时保持在-52 dB以下。静态功耗为2.5 mW。实验结果与理论分析一致。
A High Speed Pseudo-Differential OTA with Mobility Compensation Technique in 1-V Power Supply Voltage
This paper presents a high linearity operational transconductance amplifier (OTA) based on pseudo-differential structures. The linearity is improved by mobility compensation techniques as the device size is scaled down to achieve high speed operation. Transconductance tuning could be achieved by a MOS operating in the linear region. The OTA fabricated in the TSMC 0.18-mum CMOS process occupies a small area of 4.5 times 10-3 mm2. The measured third-order inter-modulation (IM3) distortion under 1-V power supply voltage remains below -52 dB up to 50 MHz for a 400 mV pp differential input. The static power consumption is 2.5 mW. Experimental results demonstrate the agreement with theoretical analyses.