多主体功能连接的随机化差分推理方法

Manjari Narayan, Genevera I. Allen
{"title":"多主体功能连接的随机化差分推理方法","authors":"Manjari Narayan, Genevera I. Allen","doi":"10.1109/PRNI.2013.29","DOIUrl":null,"url":null,"abstract":"Inferring functional connectivity, or statistical dependencies between activity in different regions of the brain, is of great interest in the study of neurocognitive conditions. For example, studies [1]-[3] indicate that patterns in connectivity might yield potential biomarkers for conditions such as Alzheimer's and autism. We model functional connectivity using Markov Networks, which use conditional dependence to determine when brain regions are directly connected. In this paper, we show that standard large-scale two-sample testing that compares graphs from distinct populations using subject level estimates of functional connectivity, fails to detect differences in functional connections. We propose a novel procedure to conduct two-sample inference via resampling and randomized edge selection to detect differential connections, with substantial improvement in statistical power and error control.","PeriodicalId":144007,"journal":{"name":"2013 International Workshop on Pattern Recognition in Neuroimaging","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Randomized Approach to Differential Inference in Multi-subject Functional Connectivity\",\"authors\":\"Manjari Narayan, Genevera I. Allen\",\"doi\":\"10.1109/PRNI.2013.29\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inferring functional connectivity, or statistical dependencies between activity in different regions of the brain, is of great interest in the study of neurocognitive conditions. For example, studies [1]-[3] indicate that patterns in connectivity might yield potential biomarkers for conditions such as Alzheimer's and autism. We model functional connectivity using Markov Networks, which use conditional dependence to determine when brain regions are directly connected. In this paper, we show that standard large-scale two-sample testing that compares graphs from distinct populations using subject level estimates of functional connectivity, fails to detect differences in functional connections. We propose a novel procedure to conduct two-sample inference via resampling and randomized edge selection to detect differential connections, with substantial improvement in statistical power and error control.\",\"PeriodicalId\":144007,\"journal\":{\"name\":\"2013 International Workshop on Pattern Recognition in Neuroimaging\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Workshop on Pattern Recognition in Neuroimaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PRNI.2013.29\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Workshop on Pattern Recognition in Neuroimaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRNI.2013.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

推断功能连通性,或大脑不同区域活动之间的统计依赖性,在神经认知条件的研究中具有很大的兴趣。例如,研究[1]-[3]表明,连接模式可能产生阿尔茨海默氏症和自闭症等疾病的潜在生物标志物。我们使用马尔可夫网络建模功能连接,该网络使用条件依赖来确定大脑区域何时直接连接。在本文中,我们展示了标准的大规模双样本测试,使用功能连接的受试者水平估计来比较来自不同人群的图,未能检测到功能连接的差异。我们提出了一种新的程序,通过重采样和随机边缘选择来进行双样本推理,以检测差分连接,在统计功率和误差控制方面有了实质性的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Randomized Approach to Differential Inference in Multi-subject Functional Connectivity
Inferring functional connectivity, or statistical dependencies between activity in different regions of the brain, is of great interest in the study of neurocognitive conditions. For example, studies [1]-[3] indicate that patterns in connectivity might yield potential biomarkers for conditions such as Alzheimer's and autism. We model functional connectivity using Markov Networks, which use conditional dependence to determine when brain regions are directly connected. In this paper, we show that standard large-scale two-sample testing that compares graphs from distinct populations using subject level estimates of functional connectivity, fails to detect differences in functional connections. We propose a novel procedure to conduct two-sample inference via resampling and randomized edge selection to detect differential connections, with substantial improvement in statistical power and error control.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信