{"title":"多主体功能连接的随机化差分推理方法","authors":"Manjari Narayan, Genevera I. Allen","doi":"10.1109/PRNI.2013.29","DOIUrl":null,"url":null,"abstract":"Inferring functional connectivity, or statistical dependencies between activity in different regions of the brain, is of great interest in the study of neurocognitive conditions. For example, studies [1]-[3] indicate that patterns in connectivity might yield potential biomarkers for conditions such as Alzheimer's and autism. We model functional connectivity using Markov Networks, which use conditional dependence to determine when brain regions are directly connected. In this paper, we show that standard large-scale two-sample testing that compares graphs from distinct populations using subject level estimates of functional connectivity, fails to detect differences in functional connections. We propose a novel procedure to conduct two-sample inference via resampling and randomized edge selection to detect differential connections, with substantial improvement in statistical power and error control.","PeriodicalId":144007,"journal":{"name":"2013 International Workshop on Pattern Recognition in Neuroimaging","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Randomized Approach to Differential Inference in Multi-subject Functional Connectivity\",\"authors\":\"Manjari Narayan, Genevera I. Allen\",\"doi\":\"10.1109/PRNI.2013.29\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inferring functional connectivity, or statistical dependencies between activity in different regions of the brain, is of great interest in the study of neurocognitive conditions. For example, studies [1]-[3] indicate that patterns in connectivity might yield potential biomarkers for conditions such as Alzheimer's and autism. We model functional connectivity using Markov Networks, which use conditional dependence to determine when brain regions are directly connected. In this paper, we show that standard large-scale two-sample testing that compares graphs from distinct populations using subject level estimates of functional connectivity, fails to detect differences in functional connections. We propose a novel procedure to conduct two-sample inference via resampling and randomized edge selection to detect differential connections, with substantial improvement in statistical power and error control.\",\"PeriodicalId\":144007,\"journal\":{\"name\":\"2013 International Workshop on Pattern Recognition in Neuroimaging\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Workshop on Pattern Recognition in Neuroimaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PRNI.2013.29\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Workshop on Pattern Recognition in Neuroimaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRNI.2013.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Randomized Approach to Differential Inference in Multi-subject Functional Connectivity
Inferring functional connectivity, or statistical dependencies between activity in different regions of the brain, is of great interest in the study of neurocognitive conditions. For example, studies [1]-[3] indicate that patterns in connectivity might yield potential biomarkers for conditions such as Alzheimer's and autism. We model functional connectivity using Markov Networks, which use conditional dependence to determine when brain regions are directly connected. In this paper, we show that standard large-scale two-sample testing that compares graphs from distinct populations using subject level estimates of functional connectivity, fails to detect differences in functional connections. We propose a novel procedure to conduct two-sample inference via resampling and randomized edge selection to detect differential connections, with substantial improvement in statistical power and error control.