受限平移yangian和受限有限𝑊-algebras

Simon M. Goodwin, L. Topley
{"title":"受限平移yangian和受限有限𝑊-algebras","authors":"Simon M. Goodwin, L. Topley","doi":"10.1090/BTRAN/63","DOIUrl":null,"url":null,"abstract":"<p>We study the truncated shifted Yangian <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Y Subscript n comma l Baseline left-parenthesis sigma right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>Y</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>n</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>l</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>σ<!-- σ --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">Y_{n,l}(\\sigma )</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> over an algebraically closed field <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck k\">\n <mml:semantics>\n <mml:mi mathvariant=\"double-struck\">k<!-- k --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\Bbbk</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of characteristic <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p greater-than 0\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>p</mml:mi>\n <mml:mo>></mml:mo>\n <mml:mn>0</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">p >0</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, which is known to be isomorphic to the finite <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper W\">\n <mml:semantics>\n <mml:mi>W</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">W</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-algebra <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper U left-parenthesis German g comma e right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>U</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"fraktur\">g</mml:mi>\n </mml:mrow>\n <mml:mo>,</mml:mo>\n <mml:mi>e</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">U(\\mathfrak {g},e)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> associated to a corresponding nilpotent element <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"e element-of German g equals German g German l Subscript upper N Baseline left-parenthesis double-struck k right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>e</mml:mi>\n <mml:mo>∈<!-- ∈ --></mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"fraktur\">g</mml:mi>\n </mml:mrow>\n <mml:mo>=</mml:mo>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"fraktur\">g</mml:mi>\n <mml:mi mathvariant=\"fraktur\">l</mml:mi>\n </mml:mrow>\n <mml:mi>N</mml:mi>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi mathvariant=\"double-struck\">k<!-- k --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">e \\in \\mathfrak {g} = \\mathfrak {gl}_N(\\Bbbk )</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. We obtain an explicit description of the centre of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Y Subscript n comma l Baseline left-parenthesis sigma right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>Y</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>n</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>l</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>σ<!-- σ --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">Y_{n,l}(\\sigma )</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, showing that it is generated by its Harish-Chandra centre and its <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\">\n <mml:semantics>\n <mml:mi>p</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-centre. We define <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Y Subscript n comma l Superscript left-bracket p right-bracket Baseline left-parenthesis sigma right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msubsup>\n <mml:mi>Y</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>n</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>l</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">[</mml:mo>\n <mml:mi>p</mml:mi>\n <mml:mo stretchy=\"false\">]</mml:mo>\n </mml:mrow>\n </mml:msubsup>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>σ<!-- σ --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">Y_{n,l}^{[p]}(\\sigma )</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> to be the quotient of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Y Subscript n comma l Baseline left-parenthesis sigma right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>Y</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>n</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>l</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>σ<!-- σ --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">Y_{n,l}(\\sigma )</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> by the ideal generated by the kernel of trivial character of its <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\">\n <mml:semantics>\n <mml:mi>p</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-centre. Our main theorem states that <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Y Subscript n comma l Superscript left-bracket p right-bracket Baseline left-parenthesis sigma right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msubsup>\n <mml:mi>Y</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>n</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>l</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">[</mml:mo>\n <mml:mi>p</mml:mi>\n <mml:mo stretchy=\"false\">]</mml:mo>\n </mml:mrow>\n </mml:msubsup>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>σ<!-- σ --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">Y_{n,l}^{[p]}(\\sigma )</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is isomorphic to the restricted finite <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper W\">\n <mml:semantics>\n <mml:mi>W</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">W</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-algebra <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper U Superscript left-bracket p right-bracket Baseline left-parenthesis German g comma e right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msup>\n <mml:mi>U</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">[</mml:mo>\n <mml:mi>p</mml:mi>\n <mml:mo stretchy=\"false\">]</mml:mo>\n </mml:mrow>\n </mml:msup>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"fraktur\">g</mml:mi>\n </mml:mrow>\n <mml:mo>,</mml:mo>\n <mml:mi>e</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">U^{[p]}(\\mathfrak {g},e)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. As a consequence we obtain an explicit presentation of this restricted <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper W\">\n <mml:semantics>\n <mml:mi>W</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">W</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-algebra.</p>","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Restricted shifted Yangians and restricted finite 𝑊-algebras\",\"authors\":\"Simon M. Goodwin, L. Topley\",\"doi\":\"10.1090/BTRAN/63\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the truncated shifted Yangian <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper Y Subscript n comma l Baseline left-parenthesis sigma right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msub>\\n <mml:mi>Y</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>n</mml:mi>\\n <mml:mo>,</mml:mo>\\n <mml:mi>l</mml:mi>\\n </mml:mrow>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>σ<!-- σ --></mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">Y_{n,l}(\\\\sigma )</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> over an algebraically closed field <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck k\\\">\\n <mml:semantics>\\n <mml:mi mathvariant=\\\"double-struck\\\">k<!-- k --></mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\Bbbk</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> of characteristic <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p greater-than 0\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>p</mml:mi>\\n <mml:mo>></mml:mo>\\n <mml:mn>0</mml:mn>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">p >0</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, which is known to be isomorphic to the finite <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper W\\\">\\n <mml:semantics>\\n <mml:mi>W</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">W</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-algebra <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper U left-parenthesis German g comma e right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>U</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"fraktur\\\">g</mml:mi>\\n </mml:mrow>\\n <mml:mo>,</mml:mo>\\n <mml:mi>e</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">U(\\\\mathfrak {g},e)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> associated to a corresponding nilpotent element <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"e element-of German g equals German g German l Subscript upper N Baseline left-parenthesis double-struck k right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>e</mml:mi>\\n <mml:mo>∈<!-- ∈ --></mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"fraktur\\\">g</mml:mi>\\n </mml:mrow>\\n <mml:mo>=</mml:mo>\\n <mml:msub>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"fraktur\\\">g</mml:mi>\\n <mml:mi mathvariant=\\\"fraktur\\\">l</mml:mi>\\n </mml:mrow>\\n <mml:mi>N</mml:mi>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi mathvariant=\\\"double-struck\\\">k<!-- k --></mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">e \\\\in \\\\mathfrak {g} = \\\\mathfrak {gl}_N(\\\\Bbbk )</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. We obtain an explicit description of the centre of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper Y Subscript n comma l Baseline left-parenthesis sigma right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msub>\\n <mml:mi>Y</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>n</mml:mi>\\n <mml:mo>,</mml:mo>\\n <mml:mi>l</mml:mi>\\n </mml:mrow>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>σ<!-- σ --></mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">Y_{n,l}(\\\\sigma )</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, showing that it is generated by its Harish-Chandra centre and its <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p\\\">\\n <mml:semantics>\\n <mml:mi>p</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">p</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-centre. We define <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper Y Subscript n comma l Superscript left-bracket p right-bracket Baseline left-parenthesis sigma right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msubsup>\\n <mml:mi>Y</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>n</mml:mi>\\n <mml:mo>,</mml:mo>\\n <mml:mi>l</mml:mi>\\n </mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo stretchy=\\\"false\\\">[</mml:mo>\\n <mml:mi>p</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">]</mml:mo>\\n </mml:mrow>\\n </mml:msubsup>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>σ<!-- σ --></mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">Y_{n,l}^{[p]}(\\\\sigma )</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> to be the quotient of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper Y Subscript n comma l Baseline left-parenthesis sigma right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msub>\\n <mml:mi>Y</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>n</mml:mi>\\n <mml:mo>,</mml:mo>\\n <mml:mi>l</mml:mi>\\n </mml:mrow>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>σ<!-- σ --></mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">Y_{n,l}(\\\\sigma )</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> by the ideal generated by the kernel of trivial character of its <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p\\\">\\n <mml:semantics>\\n <mml:mi>p</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">p</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-centre. Our main theorem states that <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper Y Subscript n comma l Superscript left-bracket p right-bracket Baseline left-parenthesis sigma right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msubsup>\\n <mml:mi>Y</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>n</mml:mi>\\n <mml:mo>,</mml:mo>\\n <mml:mi>l</mml:mi>\\n </mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo stretchy=\\\"false\\\">[</mml:mo>\\n <mml:mi>p</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">]</mml:mo>\\n </mml:mrow>\\n </mml:msubsup>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>σ<!-- σ --></mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">Y_{n,l}^{[p]}(\\\\sigma )</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is isomorphic to the restricted finite <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper W\\\">\\n <mml:semantics>\\n <mml:mi>W</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">W</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-algebra <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper U Superscript left-bracket p right-bracket Baseline left-parenthesis German g comma e right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msup>\\n <mml:mi>U</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo stretchy=\\\"false\\\">[</mml:mo>\\n <mml:mi>p</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">]</mml:mo>\\n </mml:mrow>\\n </mml:msup>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"fraktur\\\">g</mml:mi>\\n </mml:mrow>\\n <mml:mo>,</mml:mo>\\n <mml:mi>e</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">U^{[p]}(\\\\mathfrak {g},e)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. As a consequence we obtain an explicit presentation of this restricted <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper W\\\">\\n <mml:semantics>\\n <mml:mi>W</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">W</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-algebra.</p>\",\"PeriodicalId\":377306,\"journal\":{\"name\":\"Transactions of the American Mathematical Society, Series B\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the American Mathematical Society, Series B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/BTRAN/63\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/BTRAN/63","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们研究了特征为p >0 p >0的代数闭域k \Bbbk上截断移位的Yangian Y n,l (σ) Y_{n,l}(\sigma),已知它同构于有限的W W -代数U (g,e) U(\mathfrak {g},e)与对应的幂零元素e∈g = gl N(k) e \in \mathfrak {g} = \mathfrak {gl}_N(\Bbbk)相关联。我们得到了yn,l (σ) Y_{n,l}(\sigma)的中心的显式描述,表明它是由它的Harish-Chandra中心和p -中心产生的。我们定义yn,l [p] (σ) Y_{n,l}^{[p]}(\sigma)是yn,l (σ) Y_{n,l}(\sigma)的商,这是由它的p -中心的平凡性质核生成的理想。我们的主要定理表明yn,l [p] (σ) Y_{n,l}^{[p]}(\sigma)同构于有限的W -代数U [p] (g,e) U^{[p]}(\mathfrak {g},e)。因此,我们得到了这个受限ww -代数的显式表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Restricted shifted Yangians and restricted finite 𝑊-algebras

We study the truncated shifted Yangian Y n , l ( σ ) Y_{n,l}(\sigma ) over an algebraically closed field k \Bbbk of characteristic p > 0 p >0 , which is known to be isomorphic to the finite W W -algebra U ( g , e ) U(\mathfrak {g},e) associated to a corresponding nilpotent element e g = g l N ( k ) e \in \mathfrak {g} = \mathfrak {gl}_N(\Bbbk ) . We obtain an explicit description of the centre of Y n , l ( σ ) Y_{n,l}(\sigma ) , showing that it is generated by its Harish-Chandra centre and its p p -centre. We define Y n , l [ p ] ( σ ) Y_{n,l}^{[p]}(\sigma ) to be the quotient of Y n , l ( σ ) Y_{n,l}(\sigma ) by the ideal generated by the kernel of trivial character of its p p -centre. Our main theorem states that Y n , l [ p ] ( σ ) Y_{n,l}^{[p]}(\sigma ) is isomorphic to the restricted finite W W -algebra U [ p ] ( g , e ) U^{[p]}(\mathfrak {g},e) . As a consequence we obtain an explicit presentation of this restricted W W -algebra.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信