模拟:一个神经网络设计框架的准确推理与模拟在内存计算

Hadjer Benmeziane, C. Lammie, I. Boybat, M. Rasch, M. L. Gallo, H. Tsai, R. Muralidhar, S. Niar, Hamza Ouarnoughi, V. Narayanan, A. Sebastian, Kaoutar El Maghraoui
{"title":"模拟:一个神经网络设计框架的准确推理与模拟在内存计算","authors":"Hadjer Benmeziane, C. Lammie, I. Boybat, M. Rasch, M. L. Gallo, H. Tsai, R. Muralidhar, S. Niar, Hamza Ouarnoughi, V. Narayanan, A. Sebastian, Kaoutar El Maghraoui","doi":"10.1109/EDGE60047.2023.00045","DOIUrl":null,"url":null,"abstract":"The advancement of Deep Learning (DL) is driven by efficient Deep Neural Network (DNN) design and new hardware accelerators. Current DNN design is primarily tailored for general-purpose use and deployment on commercially viable platforms. Inference at the edge requires low latency, compact and power-efficient models, and must be cost-effective. Digital processors based on typical von Neumann architectures are not conducive to edge AI given the large amounts of required data movement in and out of memory. Conversely, analog/mixed-signal in-memory computing hardware accelerators can easily transcend the memory wall of von Neuman architectures when accelerating inference workloads. They offer increased area-and power efficiency, which are paramount in edge resource-constrained environments. In this paper, we propose AnalogNAS, a framework for automated DNN design targeting deployment on analog In-Memory Computing (IMC) inference accelerators. We conduct extensive hardware simulations to demonstrate the performance of AnalogNAS on State-Of-The-Art (SOTA) models in terms of accuracy and deployment efficiency on various Tiny Machine Learning (TinyML) tasks. We also present experimental results that show AnalogNAS models achieving higher accuracy than SOTA models when implemented on a 64-core IMC chip based on Phase Change Memory (PCM). The AnalogNAS search code is released1","PeriodicalId":369407,"journal":{"name":"2023 IEEE International Conference on Edge Computing and Communications (EDGE)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"AnalogNAS: A Neural Network Design Framework for Accurate Inference with Analog In-Memory Computing\",\"authors\":\"Hadjer Benmeziane, C. Lammie, I. Boybat, M. Rasch, M. L. Gallo, H. Tsai, R. Muralidhar, S. Niar, Hamza Ouarnoughi, V. Narayanan, A. Sebastian, Kaoutar El Maghraoui\",\"doi\":\"10.1109/EDGE60047.2023.00045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The advancement of Deep Learning (DL) is driven by efficient Deep Neural Network (DNN) design and new hardware accelerators. Current DNN design is primarily tailored for general-purpose use and deployment on commercially viable platforms. Inference at the edge requires low latency, compact and power-efficient models, and must be cost-effective. Digital processors based on typical von Neumann architectures are not conducive to edge AI given the large amounts of required data movement in and out of memory. Conversely, analog/mixed-signal in-memory computing hardware accelerators can easily transcend the memory wall of von Neuman architectures when accelerating inference workloads. They offer increased area-and power efficiency, which are paramount in edge resource-constrained environments. In this paper, we propose AnalogNAS, a framework for automated DNN design targeting deployment on analog In-Memory Computing (IMC) inference accelerators. We conduct extensive hardware simulations to demonstrate the performance of AnalogNAS on State-Of-The-Art (SOTA) models in terms of accuracy and deployment efficiency on various Tiny Machine Learning (TinyML) tasks. We also present experimental results that show AnalogNAS models achieving higher accuracy than SOTA models when implemented on a 64-core IMC chip based on Phase Change Memory (PCM). The AnalogNAS search code is released1\",\"PeriodicalId\":369407,\"journal\":{\"name\":\"2023 IEEE International Conference on Edge Computing and Communications (EDGE)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Edge Computing and Communications (EDGE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EDGE60047.2023.00045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Edge Computing and Communications (EDGE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDGE60047.2023.00045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

深度学习(DL)的进步是由高效的深度神经网络(DNN)设计和新的硬件加速器驱动的。目前的深度神经网络设计主要是为通用用途和商业可行平台的部署而量身定制的。边缘推断需要低延迟、紧凑和节能的模型,并且必须具有成本效益。基于典型冯·诺伊曼架构的数字处理器不利于边缘人工智能,因为需要在内存中进出大量数据。相反,在加速推理工作负载时,内存中的模拟/混合信号计算硬件加速器可以很容易地超越冯诺依曼架构的内存墙。它们提供了更高的面积和功率效率,这在边缘资源受限的环境中是至关重要的。在本文中,我们提出了AnalogNAS,这是一个针对模拟内存计算(IMC)推理加速器部署的自动深度神经网络设计框架。我们进行了广泛的硬件仿真,以证明在各种微型机器学习(TinyML)任务上,在最先进(SOTA)模型上的AnalogNAS在准确性和部署效率方面的性能。我们还展示了实验结果,表明在基于相变存储器(PCM)的64核IMC芯片上实现的AnalogNAS模型比SOTA模型具有更高的精度。释放了AnalogNAS搜索代码1
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AnalogNAS: A Neural Network Design Framework for Accurate Inference with Analog In-Memory Computing
The advancement of Deep Learning (DL) is driven by efficient Deep Neural Network (DNN) design and new hardware accelerators. Current DNN design is primarily tailored for general-purpose use and deployment on commercially viable platforms. Inference at the edge requires low latency, compact and power-efficient models, and must be cost-effective. Digital processors based on typical von Neumann architectures are not conducive to edge AI given the large amounts of required data movement in and out of memory. Conversely, analog/mixed-signal in-memory computing hardware accelerators can easily transcend the memory wall of von Neuman architectures when accelerating inference workloads. They offer increased area-and power efficiency, which are paramount in edge resource-constrained environments. In this paper, we propose AnalogNAS, a framework for automated DNN design targeting deployment on analog In-Memory Computing (IMC) inference accelerators. We conduct extensive hardware simulations to demonstrate the performance of AnalogNAS on State-Of-The-Art (SOTA) models in terms of accuracy and deployment efficiency on various Tiny Machine Learning (TinyML) tasks. We also present experimental results that show AnalogNAS models achieving higher accuracy than SOTA models when implemented on a 64-core IMC chip based on Phase Change Memory (PCM). The AnalogNAS search code is released1
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信