{"title":"基于BSIF-RMI的快速鲁棒关键帧视频复制检测","authors":"Yassine Himeur, Karima Ait-Sadi, Abdelmalik Oumamne","doi":"10.5220/0005060000400047","DOIUrl":null,"url":null,"abstract":"Content Based Video Copy Detection (CBVCD) has gained a lot of scientific interest in recent years. One of the biggest causes of video duplicates is transformation. This paper addresses a fast video copy detection approach based on key-frames extraction which is robust to different transformations. In the proposed scheme, the key-frames of videos are first extracted based on Gradient Magnitude Similarity Deviation (GMSD). The descriptor used in the detection process is extracted using a fusion of Binarized Statistical Image Features (BSIF) and Relative Mean Intensity (RMI). Feature vectors are then reduced by Principal Component Analysis (PCA), which can more accelerate the detection process while keeping a good robustness against different transformations. The proposed framework is tested on the query and reference dataset of CBCD task of Muscle VCD 2007 and TRECVID 2009. Our results are compared with those obtained by other works in the literature. The proposed approach shows promising performances in terms of both robustness and time execution.","PeriodicalId":438702,"journal":{"name":"2014 International Conference on Signal Processing and Multimedia Applications (SIGMAP)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A fast and robust Key-frames based Video Copy Detection using BSIF-RMI\",\"authors\":\"Yassine Himeur, Karima Ait-Sadi, Abdelmalik Oumamne\",\"doi\":\"10.5220/0005060000400047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Content Based Video Copy Detection (CBVCD) has gained a lot of scientific interest in recent years. One of the biggest causes of video duplicates is transformation. This paper addresses a fast video copy detection approach based on key-frames extraction which is robust to different transformations. In the proposed scheme, the key-frames of videos are first extracted based on Gradient Magnitude Similarity Deviation (GMSD). The descriptor used in the detection process is extracted using a fusion of Binarized Statistical Image Features (BSIF) and Relative Mean Intensity (RMI). Feature vectors are then reduced by Principal Component Analysis (PCA), which can more accelerate the detection process while keeping a good robustness against different transformations. The proposed framework is tested on the query and reference dataset of CBCD task of Muscle VCD 2007 and TRECVID 2009. Our results are compared with those obtained by other works in the literature. The proposed approach shows promising performances in terms of both robustness and time execution.\",\"PeriodicalId\":438702,\"journal\":{\"name\":\"2014 International Conference on Signal Processing and Multimedia Applications (SIGMAP)\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Signal Processing and Multimedia Applications (SIGMAP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0005060000400047\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Signal Processing and Multimedia Applications (SIGMAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0005060000400047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A fast and robust Key-frames based Video Copy Detection using BSIF-RMI
Content Based Video Copy Detection (CBVCD) has gained a lot of scientific interest in recent years. One of the biggest causes of video duplicates is transformation. This paper addresses a fast video copy detection approach based on key-frames extraction which is robust to different transformations. In the proposed scheme, the key-frames of videos are first extracted based on Gradient Magnitude Similarity Deviation (GMSD). The descriptor used in the detection process is extracted using a fusion of Binarized Statistical Image Features (BSIF) and Relative Mean Intensity (RMI). Feature vectors are then reduced by Principal Component Analysis (PCA), which can more accelerate the detection process while keeping a good robustness against different transformations. The proposed framework is tested on the query and reference dataset of CBCD task of Muscle VCD 2007 and TRECVID 2009. Our results are compared with those obtained by other works in the literature. The proposed approach shows promising performances in terms of both robustness and time execution.